L(s) = 1 | + 2·2-s + 2·4-s − 5·9-s + 2·13-s − 4·16-s + 14·17-s − 10·18-s + 4·26-s − 10·29-s − 8·32-s + 28·34-s − 10·36-s + 4·37-s + 4·41-s + 49-s + 4·52-s + 12·53-s − 20·58-s − 16·61-s − 8·64-s + 28·68-s + 12·73-s + 8·74-s + 16·81-s + 8·82-s + 14·97-s + 2·98-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 5/3·9-s + 0.554·13-s − 16-s + 3.39·17-s − 2.35·18-s + 0.784·26-s − 1.85·29-s − 1.41·32-s + 4.80·34-s − 5/3·36-s + 0.657·37-s + 0.624·41-s + 1/7·49-s + 0.554·52-s + 1.64·53-s − 2.62·58-s − 2.04·61-s − 64-s + 3.39·68-s + 1.40·73-s + 0.929·74-s + 16/9·81-s + 0.883·82-s + 1.42·97-s + 0.202·98-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.589126195\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.589126195\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.569343753087953468815992872802, −7.943950985696702485922224990231, −7.41192519294123246216805168593, −7.38451703018051703490900915946, −6.20892833382707396477507471574, −5.93898740434763322465740513982, −5.86948996746859435559692437938, −5.14936161735373762545181523253, −5.04950450614587838523509099308, −4.01558432174714569962208636972, −3.57752582126466520607951640819, −3.25831654996759112584151679894, −2.76472422088648867371864611007, −1.95044579129989398832305438850, −0.808304732563204183922021296054,
0.808304732563204183922021296054, 1.95044579129989398832305438850, 2.76472422088648867371864611007, 3.25831654996759112584151679894, 3.57752582126466520607951640819, 4.01558432174714569962208636972, 5.04950450614587838523509099308, 5.14936161735373762545181523253, 5.86948996746859435559692437938, 5.93898740434763322465740513982, 6.20892833382707396477507471574, 7.38451703018051703490900915946, 7.41192519294123246216805168593, 7.943950985696702485922224990231, 8.569343753087953468815992872802