L(s) = 1 | − 2·4-s − 5·9-s − 10·13-s + 4·16-s − 6·17-s + 6·29-s + 10·36-s − 4·37-s − 24·41-s + 49-s + 20·52-s − 24·53-s + 16·61-s − 8·64-s + 12·68-s − 4·73-s + 16·81-s − 24·89-s + 2·97-s + 12·101-s − 14·109-s − 12·113-s − 12·116-s + 50·117-s − 13·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 4-s − 5/3·9-s − 2.77·13-s + 16-s − 1.45·17-s + 1.11·29-s + 5/3·36-s − 0.657·37-s − 3.74·41-s + 1/7·49-s + 2.77·52-s − 3.29·53-s + 2.04·61-s − 64-s + 1.45·68-s − 0.468·73-s + 16/9·81-s − 2.54·89-s + 0.203·97-s + 1.19·101-s − 1.34·109-s − 1.12·113-s − 1.11·116-s + 4.62·117-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.214592059880155258547933248387, −7.86011514048466165442018696861, −6.93454011637102289378074371468, −6.88150838864812305101444716237, −6.27248387518076710770064262455, −5.45020178597402395728815947142, −5.19532839461654101726843493087, −4.78686073935120916368506592009, −4.46535279179624622242920849885, −3.55022395369242424556181791228, −2.98704088538274633622207409794, −2.54455347664810529993661521980, −1.77645134008769781761461177809, 0, 0,
1.77645134008769781761461177809, 2.54455347664810529993661521980, 2.98704088538274633622207409794, 3.55022395369242424556181791228, 4.46535279179624622242920849885, 4.78686073935120916368506592009, 5.19532839461654101726843493087, 5.45020178597402395728815947142, 6.27248387518076710770064262455, 6.88150838864812305101444716237, 6.93454011637102289378074371468, 7.86011514048466165442018696861, 8.214592059880155258547933248387