| L(s) = 1 | + 2·3-s + 2·7-s + 9-s − 8·13-s + 12·19-s + 4·21-s − 10·25-s − 4·27-s + 8·31-s + 20·37-s − 16·39-s − 8·43-s + 3·49-s + 24·57-s − 16·61-s + 2·63-s + 16·67-s − 12·73-s − 20·75-s + 32·79-s − 11·81-s − 16·91-s + 16·93-s − 4·97-s + 8·103-s + 20·109-s + 40·111-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 0.755·7-s + 1/3·9-s − 2.21·13-s + 2.75·19-s + 0.872·21-s − 2·25-s − 0.769·27-s + 1.43·31-s + 3.28·37-s − 2.56·39-s − 1.21·43-s + 3/7·49-s + 3.17·57-s − 2.04·61-s + 0.251·63-s + 1.95·67-s − 1.40·73-s − 2.30·75-s + 3.60·79-s − 1.22·81-s − 1.67·91-s + 1.65·93-s − 0.406·97-s + 0.788·103-s + 1.91·109-s + 3.79·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.881300729\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.881300729\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.247827016681358338699106327510, −8.142737265603496815088661734936, −7.64230674264070832489473958476, −7.53632864653844024945923131798, −7.03619200467257105345639081242, −6.19321040018157050389604631782, −5.72643285643591914021095909045, −5.20704742703837539203927825545, −4.62285613804853643208241606946, −4.38921941756740989472338293857, −3.39651452170084757716747861999, −3.09009811816266066443914661488, −2.38160133368819946421648201021, −2.00516068697428410265218115685, −0.867770609357001154731944493797,
0.867770609357001154731944493797, 2.00516068697428410265218115685, 2.38160133368819946421648201021, 3.09009811816266066443914661488, 3.39651452170084757716747861999, 4.38921941756740989472338293857, 4.62285613804853643208241606946, 5.20704742703837539203927825545, 5.72643285643591914021095909045, 6.19321040018157050389604631782, 7.03619200467257105345639081242, 7.53632864653844024945923131798, 7.64230674264070832489473958476, 8.142737265603496815088661734936, 8.247827016681358338699106327510