L(s) = 1 | + 2·2-s + 3·4-s + 6·7-s + 4·8-s + 5·9-s − 6·13-s + 12·14-s + 5·16-s + 10·18-s − 12·26-s + 18·28-s + 6·32-s + 15·36-s + 6·37-s + 6·47-s + 13·49-s − 18·52-s + 24·56-s − 16·61-s + 30·63-s + 7·64-s − 24·67-s + 20·72-s − 12·73-s + 12·74-s − 20·79-s + 16·81-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 2.26·7-s + 1.41·8-s + 5/3·9-s − 1.66·13-s + 3.20·14-s + 5/4·16-s + 2.35·18-s − 2.35·26-s + 3.40·28-s + 1.06·32-s + 5/2·36-s + 0.986·37-s + 0.875·47-s + 13/7·49-s − 2.49·52-s + 3.20·56-s − 2.04·61-s + 3.77·63-s + 7/8·64-s − 2.93·67-s + 2.35·72-s − 1.40·73-s + 1.39·74-s − 2.25·79-s + 16/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.814025364\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.814025364\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77128747249240268522110685343, −10.59358246500303985706051099521, −9.919582178195877658614606755822, −9.792805258678974609615639773783, −8.971911149774787757747833746440, −8.497338597093787120376714571584, −7.77321445513339314779217604491, −7.61891432149947105942559238352, −7.18900165627792106120454499034, −7.00401701590232774144305270559, −5.93614338951729146501397390812, −5.83743036584630238830744322415, −4.87140494897237862716478860139, −4.81601720941620821500807048744, −4.36530358712088292472820094178, −4.16491894389083767687205950364, −3.07387344338991951809724368298, −2.51421172475490529448825642946, −1.65692696845448470095164131922, −1.47710430472257870417924395030,
1.47710430472257870417924395030, 1.65692696845448470095164131922, 2.51421172475490529448825642946, 3.07387344338991951809724368298, 4.16491894389083767687205950364, 4.36530358712088292472820094178, 4.81601720941620821500807048744, 4.87140494897237862716478860139, 5.83743036584630238830744322415, 5.93614338951729146501397390812, 7.00401701590232774144305270559, 7.18900165627792106120454499034, 7.61891432149947105942559238352, 7.77321445513339314779217604491, 8.497338597093787120376714571584, 8.971911149774787757747833746440, 9.792805258678974609615639773783, 9.919582178195877658614606755822, 10.59358246500303985706051099521, 10.77128747249240268522110685343