Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 37 x^{2} )^{2}$ |
$1 - 6 x + 83 x^{2} - 222 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.420687118444$, $\pm0.420687118444$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $21$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1225$ | $2059225$ | $2596921600$ | $3506911655625$ | $4806395848830625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $1500$ | $51266$ | $1871188$ | $69312392$ | $2565741750$ | $94933091096$ | $3512482528228$ | $129961704101402$ | $4808584151587500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=9 x^6+24 x^5+3 x^4+20 x^3+30 x^2+9 x+25$
- $y^2=35 x^6+3 x^5+27 x^4+12 x^3+7 x^2+27 x+20$
- $y^2=23 x^6+29 x^5+36 x^4+35 x^3+10 x^2+14 x+14$
- $y^2=15 x^6+8 x^5+32 x^4+21 x^3+14 x^2+32 x+6$
- $y^2=29 x^6+36 x^5+33 x^4+5 x^3+23 x^2+16 x+28$
- $y^2=7 x^6+34 x^5+15 x^4+34 x^3+4 x^2+x+22$
- $y^2=5 x^6+26 x^5+4 x^4+29 x^3+34 x^2+10 x+32$
- $y^2=9 x^6+21 x^5+5 x^4+21 x^3+5 x^2+21 x+9$
- $y^2=22 x^6+2 x^5+11 x^4+21 x^3+3 x^2+24 x+35$
- $y^2=32 x^6+24 x^5+6 x^4+16 x^3+29 x^2+18 x+5$
- $y^2=18 x^6+8 x^5+4 x^4+19 x^3+12 x^2+35 x+5$
- $y^2=6 x^6+15 x^5+21 x^4+36 x^3+27 x^2+23 x+35$
- $y^2=4 x^6+16 x^5+18 x^4+20 x^3+35 x^2+34 x+34$
- $y^2=31 x^6+20 x^5+23 x^4+25 x^3+24 x^2+18 x+23$
- $y^2=24 x^6+11 x^5+23 x^4+35 x^3+22 x^2+3 x+32$
- $y^2=12 x^6+9 x^5+24 x^4+3 x^3+28 x^2+29 x+26$
- $y^2=27 x^6+3 x^5+19 x^4+10 x^3+34 x^2+22 x+1$
- $y^2=21 x^6+27 x^5+13 x^3+10 x^2+27 x+16$
- $y^2=14 x^6+16 x^5+16 x^4+27 x^2+34 x+8$
- $y^2=6 x^6+12 x^5+26 x^4+4 x^3+20 x^2+4 x+22$
- $y^2=8 x^6+28 x^5+18 x^4+31 x^3+17 x^2+30 x+31$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.ad 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-139}) \)$)$ |
Base change
This is a primitive isogeny class.