L(s) = 1 | − 2-s + 5-s − 4·7-s + 8-s − 10-s + 3·11-s − 2·13-s + 4·14-s − 16-s − 6·17-s + 19-s − 3·22-s + 9·23-s + 2·26-s − 12·29-s − 8·31-s + 6·34-s − 4·35-s + 7·37-s − 38-s + 40-s − 6·41-s + 4·43-s − 9·46-s + 9·47-s + 9·49-s + 9·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.447·5-s − 1.51·7-s + 0.353·8-s − 0.316·10-s + 0.904·11-s − 0.554·13-s + 1.06·14-s − 1/4·16-s − 1.45·17-s + 0.229·19-s − 0.639·22-s + 1.87·23-s + 0.392·26-s − 2.22·29-s − 1.43·31-s + 1.02·34-s − 0.676·35-s + 1.15·37-s − 0.162·38-s + 0.158·40-s − 0.937·41-s + 0.609·43-s − 1.32·46-s + 1.31·47-s + 9/7·49-s + 1.23·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7455685926\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7455685926\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86037196350447712640105800846, −10.23348268908069349692735258134, −9.810832613109154651187308458365, −9.275038363577339608377732855048, −9.167571816295817541578745753878, −9.027830488649272853844521243567, −8.431322923498462436438461027243, −7.48834055310823392296467258631, −7.22997307536705740678455435116, −7.05508828640405727662233321768, −6.27211740071925058886239990051, −6.09233066087942632195082256806, −5.37344625041636840779741858388, −4.91434467143120060405755887229, −4.06318716330875927530917019269, −3.77740788401466358629796333697, −3.01806832281580732517391860513, −2.38501681317349082141778395324, −1.66147720136269519746512500824, −0.53165783016322973948503440947,
0.53165783016322973948503440947, 1.66147720136269519746512500824, 2.38501681317349082141778395324, 3.01806832281580732517391860513, 3.77740788401466358629796333697, 4.06318716330875927530917019269, 4.91434467143120060405755887229, 5.37344625041636840779741858388, 6.09233066087942632195082256806, 6.27211740071925058886239990051, 7.05508828640405727662233321768, 7.22997307536705740678455435116, 7.48834055310823392296467258631, 8.431322923498462436438461027243, 9.027830488649272853844521243567, 9.167571816295817541578745753878, 9.275038363577339608377732855048, 9.810832613109154651187308458365, 10.23348268908069349692735258134, 10.86037196350447712640105800846