L(s) = 1 | − 2·3-s − 2·5-s − 2·7-s − 6·11-s + 8·13-s + 4·15-s − 2·17-s − 4·19-s + 4·21-s − 6·23-s + 3·25-s + 2·27-s + 10·31-s + 12·33-s + 4·35-s + 8·37-s − 16·39-s + 8·43-s + 12·47-s − 8·49-s + 4·51-s − 12·53-s + 12·55-s + 8·57-s − 12·59-s − 4·61-s − 16·65-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.894·5-s − 0.755·7-s − 1.80·11-s + 2.21·13-s + 1.03·15-s − 0.485·17-s − 0.917·19-s + 0.872·21-s − 1.25·23-s + 3/5·25-s + 0.384·27-s + 1.79·31-s + 2.08·33-s + 0.676·35-s + 1.31·37-s − 2.56·39-s + 1.21·43-s + 1.75·47-s − 8/7·49-s + 0.560·51-s − 1.64·53-s + 1.61·55-s + 1.05·57-s − 1.56·59-s − 0.512·61-s − 1.98·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.959314497829689262731123948913, −7.80970495556761182969265867875, −7.26873635428272206285636450313, −6.78969780910536162205506448834, −6.34207917269186727188265448310, −6.17051922441214432915579386873, −5.89855950290715254509175412214, −5.70482360446289719363957453459, −5.08523908256143074815478226172, −4.67783571251073866122118633933, −4.19445357086518781634603704902, −4.15574795140059025801192735322, −3.43302391280414622716487191873, −3.15432788525439262464799657290, −2.54079020490174198820598195275, −2.35303250384610630072168019870, −1.37736621635046325012614634568, −0.866237596936142564823046436795, 0, 0,
0.866237596936142564823046436795, 1.37736621635046325012614634568, 2.35303250384610630072168019870, 2.54079020490174198820598195275, 3.15432788525439262464799657290, 3.43302391280414622716487191873, 4.15574795140059025801192735322, 4.19445357086518781634603704902, 4.67783571251073866122118633933, 5.08523908256143074815478226172, 5.70482360446289719363957453459, 5.89855950290715254509175412214, 6.17051922441214432915579386873, 6.34207917269186727188265448310, 6.78969780910536162205506448834, 7.26873635428272206285636450313, 7.80970495556761182969265867875, 7.959314497829689262731123948913