Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 90 x^{2} - 344 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.307279175677$, $\pm0.486989640940$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.179712.3 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
Isomorphism classes: | 76 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1588$ | $3639696$ | $6370536724$ | $11685229449216$ | $21610352419999348$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1966$ | $80124$ | $3417934$ | $147000756$ | $6321377086$ | $271817977740$ | $11688192907678$ | $502592629024068$ | $21611482869444046$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=39 x^6+29 x^5+15 x^4+31 x^3+12 x+19$
- $y^2=23 x^6+9 x^5+20 x^4+3 x^3+19 x^2+41 x+3$
- $y^2=27 x^6+26 x^5+18 x^4+38 x^3+11 x^2+31 x+8$
- $y^2=31 x^6+33 x^5+26 x^4+19 x^3+14 x^2+36 x+2$
- $y^2=4 x^6+12 x^5+23 x^4+11 x^3+28 x^2+26$
- $y^2=29 x^6+x^5+4 x^4+3 x^3+5 x^2+2 x+23$
- $y^2=40 x^6+39 x^5+x^4+2 x^3+24 x^2+41 x+9$
- $y^2=9 x^6+41 x^5+6 x^4+20 x^3+21 x^2+x+16$
- $y^2=29 x^6+33 x^5+4 x^4+x^3+30 x^2+3 x+5$
- $y^2=21 x^6+28 x^5+23 x^4+32 x^3+8 x^2+24 x+35$
- $y^2=15 x^6+21 x^5+20 x^4+25 x^3+41 x^2+13 x+41$
- $y^2=7 x^6+36 x^5+26 x^4+27 x^3+37 x^2+24 x+25$
- $y^2=3 x^6+39 x^5+x^4+31 x^3+3 x^2+16 x+22$
- $y^2=19 x^6+27 x^5+17 x^4+14 x^3+15 x^2+8 x+33$
- $y^2=21 x^6+31 x^5+27 x^4+10 x^3+37 x^2+32 x+19$
- $y^2=12 x^6+14 x^5+28 x^4+27 x^3+37 x^2+8 x+24$
- $y^2=22 x^6+30 x^5+10 x^4+41 x^3+x^2+14 x+5$
- $y^2=38 x^6+24 x^5+38 x^4+36 x^3+10 x^2+31 x+21$
- $y^2=11 x^6+36 x^5+7 x^4+29 x^3+42 x^2+38 x+15$
- $y^2=x^6+13 x^5+37 x^4+38 x^3+x^2+3 x+12$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.179712.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.i_dm | $2$ | (not in LMFDB) |