Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 76 x^{2} - 426 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.256770022214$, $\pm0.609031730247$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5371200.1 |
Galois group: | $D_{4}$ |
Jacobians: | $312$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4686$ | $26007300$ | $128054982726$ | $645957770158800$ | $3255491557646793366$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $5158$ | $357786$ | $25419718$ | $1804366806$ | $128099859478$ | $9095111223726$ | $645753527941438$ | $45848500503938946$ | $3255243548307403798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=28 x^6+40 x^5+13 x^4+44 x^3+44 x^2+63 x+13$
- $y^2=56 x^6+8 x^5+7 x^4+67 x^3+18 x^2+59 x+30$
- $y^2=34 x^6+67 x^5+66 x^4+47 x^3+48 x^2+24 x+33$
- $y^2=8 x^6+65 x^5+24 x^4+32 x^3+62 x^2+3 x+49$
- $y^2=36 x^6+26 x^5+60 x^4+50 x^3+19 x^2+53 x+30$
- $y^2=18 x^6+62 x^5+47 x^4+51 x^3+60 x^2+31 x+26$
- $y^2=39 x^6+61 x^5+17 x^4+36 x^3+63 x^2+32 x+9$
- $y^2=45 x^6+18 x^5+8 x^4+54 x^3+68 x^2+8 x+55$
- $y^2=50 x^6+61 x^5+12 x^4+6 x^3+61 x^2+54 x+10$
- $y^2=23 x^6+55 x^5+44 x^4+6 x^3+66 x^2+36 x+10$
- $y^2=21 x^6+13 x^4+70 x^3+7 x^2+46 x+42$
- $y^2=66 x^6+27 x^5+26 x^4+17 x^3+30 x^2+63 x+29$
- $y^2=18 x^6+17 x^5+9 x^4+x^3+6 x^2+32 x+43$
- $y^2=38 x^6+11 x^5+57 x^4+30 x^3+13 x^2+20 x+8$
- $y^2=8 x^6+7 x^5+7 x^4+16 x^3+3 x+23$
- $y^2=16 x^6+45 x^5+57 x^4+55 x^3+6 x^2+49 x+66$
- $y^2=68 x^6+22 x^5+5 x^4+66 x^3+50 x^2+16 x+33$
- $y^2=41 x^6+34 x^5+44 x^4+43 x^3+52 x^2+39 x+66$
- $y^2=48 x^6+18 x^5+42 x^4+20 x^3+49 x+53$
- $y^2=62 x^6+54 x^5+14 x^4+37 x^3+62 x^2+34 x+65$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.5371200.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.g_cy | $2$ | (not in LMFDB) |