L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s − 8·13-s + 5·16-s − 8·19-s − 8·25-s − 16·26-s + 6·32-s − 16·38-s − 8·43-s + 16·47-s − 14·49-s − 16·50-s − 24·52-s − 8·53-s − 8·59-s + 7·64-s − 24·67-s − 24·76-s − 8·83-s − 16·86-s + 32·94-s − 28·98-s − 24·100-s − 24·101-s − 32·103-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s − 2.21·13-s + 5/4·16-s − 1.83·19-s − 8/5·25-s − 3.13·26-s + 1.06·32-s − 2.59·38-s − 1.21·43-s + 2.33·47-s − 2·49-s − 2.26·50-s − 3.32·52-s − 1.09·53-s − 1.04·59-s + 7/8·64-s − 2.93·67-s − 2.75·76-s − 0.878·83-s − 1.72·86-s + 3.30·94-s − 2.82·98-s − 2.39·100-s − 2.38·101-s − 3.15·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75380878681612994749927365382, −7.68582147448511375802227195743, −7.08723221152403327686384520603, −7.05619607850836071291234291477, −6.35603801716871027830416335341, −6.30077247036049093190895201608, −5.73201587559646545670012627853, −5.54535162690106992289357885630, −4.91948267407525593483839240781, −4.72029342750362956367587249574, −4.40777553926114437731209101934, −4.02296271875790227656328213350, −3.65382085474867776153686335678, −2.99697442188261949983868665252, −2.64388474953405160966341222365, −2.41615921997312409856063197069, −1.67006343797710253516367950950, −1.58574485714918713104991789401, 0, 0,
1.58574485714918713104991789401, 1.67006343797710253516367950950, 2.41615921997312409856063197069, 2.64388474953405160966341222365, 2.99697442188261949983868665252, 3.65382085474867776153686335678, 4.02296271875790227656328213350, 4.40777553926114437731209101934, 4.72029342750362956367587249574, 4.91948267407525593483839240781, 5.54535162690106992289357885630, 5.73201587559646545670012627853, 6.30077247036049093190895201608, 6.35603801716871027830416335341, 7.05619607850836071291234291477, 7.08723221152403327686384520603, 7.68582147448511375802227195743, 7.75380878681612994749927365382