Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x^{2} + 529 x^{4}$ |
Frobenius angles: | $\pm0.299219255204$, $\pm0.700780744796$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-15})\) |
Galois group: | $C_2^2$ |
Jacobians: | $82$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $544$ | $295936$ | $148016416$ | $78794735616$ | $41426524082464$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $558$ | $12168$ | $281566$ | $6436344$ | $147996942$ | $3404825448$ | $78310618558$ | $1801152661464$ | $41426536951278$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 82 curves (of which all are hyperelliptic):
- $y^2=10 x^6+21 x^5+10 x^4+17 x^3+9 x^2+5 x+4$
- $y^2=4 x^6+13 x^5+4 x^4+16 x^3+22 x^2+2 x+20$
- $y^2=15 x^6+5 x^5+22 x^4+16 x^3+16 x^2+15 x+16$
- $y^2=9 x^6+14 x^5+15 x^4+11 x^3+15 x^2+11 x+7$
- $y^2=22 x^6+x^5+6 x^4+9 x^3+6 x^2+9 x+12$
- $y^2=4 x^6+19 x^5+14 x^4+x^3+18 x^2+3 x$
- $y^2=20 x^6+3 x^5+x^4+5 x^3+21 x^2+15 x$
- $y^2=9 x^6+7 x^5+20 x^4+7 x^3+6 x^2+18$
- $y^2=5 x^6+22 x^5+12 x^4+18 x^3+2 x^2+20 x+15$
- $y^2=2 x^6+18 x^5+14 x^4+21 x^3+10 x^2+8 x+6$
- $y^2=x^6+9 x^5+x^4+x^3+15 x^2+x+17$
- $y^2=11 x^6+8 x^5+21 x^4+19 x^3+9 x^2+13 x+10$
- $y^2=8 x^6+16 x^5+13 x^4+20 x^3+13 x^2+x+3$
- $y^2=17 x^6+11 x^5+19 x^4+8 x^3+19 x^2+5 x+15$
- $y^2=5 x^6+8 x^5+17 x^4+2 x^3+15 x^2+16 x+9$
- $y^2=2 x^6+17 x^5+16 x^4+10 x^3+6 x^2+11 x+22$
- $y^2=8 x^6+20 x^5+12 x^4+19 x^2+13 x+1$
- $y^2=17 x^6+8 x^5+14 x^4+3 x^2+19 x+5$
- $y^2=7 x^6+10 x^5+18 x^4+18 x^3+11 x^2+7 x+9$
- $y^2=3 x^6+13 x^5+19 x^4+x^3+22 x^2+22 x+9$
- and 62 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-15})\). |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.o 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.a_ao | $4$ | (not in LMFDB) |
2.23.ai_bg | $8$ | (not in LMFDB) |
2.23.i_bg | $8$ | (not in LMFDB) |