-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 544, 'abvar_counts': [544, 295936, 148016416, 78794735616, 41426524082464, 21908859405485056, 11592836318895455776, 6132581697353475686400, 3244150909896511582979104, 1716156897554969757072311296], 'abvar_counts_str': '544 295936 148016416 78794735616 41426524082464 21908859405485056 11592836318895455776 6132581697353475686400 3244150909896511582979104 1716156897554969757072311296 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.299219255203909, 0.700780744796092], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 24, 'curve_counts': [24, 558, 12168, 281566, 6436344, 147996942, 3404825448, 78310618558, 1801152661464, 41426536951278], 'curve_counts_str': '24 558 12168 281566 6436344 147996942 3404825448 78310618558 1801152661464 41426536951278 ', 'curves': ['y^2=10*x^6+21*x^5+10*x^4+17*x^3+9*x^2+5*x+4', 'y^2=4*x^6+13*x^5+4*x^4+16*x^3+22*x^2+2*x+20', 'y^2=15*x^6+5*x^5+22*x^4+16*x^3+16*x^2+15*x+16', 'y^2=9*x^6+14*x^5+15*x^4+11*x^3+15*x^2+11*x+7', 'y^2=22*x^6+x^5+6*x^4+9*x^3+6*x^2+9*x+12', 'y^2=4*x^6+19*x^5+14*x^4+x^3+18*x^2+3*x', 'y^2=20*x^6+3*x^5+x^4+5*x^3+21*x^2+15*x', 'y^2=9*x^6+7*x^5+20*x^4+7*x^3+6*x^2+18', 'y^2=5*x^6+22*x^5+12*x^4+18*x^3+2*x^2+20*x+15', 'y^2=2*x^6+18*x^5+14*x^4+21*x^3+10*x^2+8*x+6', 'y^2=x^6+9*x^5+x^4+x^3+15*x^2+x+17', 'y^2=11*x^6+8*x^5+21*x^4+19*x^3+9*x^2+13*x+10', 'y^2=8*x^6+16*x^5+13*x^4+20*x^3+13*x^2+x+3', 'y^2=17*x^6+11*x^5+19*x^4+8*x^3+19*x^2+5*x+15', 'y^2=5*x^6+8*x^5+17*x^4+2*x^3+15*x^2+16*x+9', 'y^2=2*x^6+17*x^5+16*x^4+10*x^3+6*x^2+11*x+22', 'y^2=8*x^6+20*x^5+12*x^4+19*x^2+13*x+1', 'y^2=17*x^6+8*x^5+14*x^4+3*x^2+19*x+5', 'y^2=7*x^6+10*x^5+18*x^4+18*x^3+11*x^2+7*x+9', 'y^2=3*x^6+13*x^5+19*x^4+x^3+22*x^2+22*x+9', 'y^2=10*x^6+19*x^5+18*x^4+16*x^2+18*x+16', 'y^2=12*x^6+10*x^5+9*x^4+17*x^3+16*x+18', 'y^2=18*x^6+17*x^5+3*x^4+22*x^3+5*x^2+14*x+22', 'y^2=12*x^6+2*x^5+17*x^4+13*x^3+4*x^2+22*x+10', 'y^2=14*x^6+10*x^5+16*x^4+19*x^3+20*x^2+18*x+4', 'y^2=20*x^6+3*x^5+8*x^4+15*x^3+6*x^2+21', 'y^2=11*x^6+18*x^5+22*x^4+10*x^3+12*x^2+21*x+12', 'y^2=9*x^6+21*x^5+18*x^4+4*x^3+14*x^2+13*x+14', 'y^2=11*x^6+8*x^5+14*x^4+17*x^3+9*x^2+7*x+5', 'y^2=9*x^6+17*x^5+x^4+16*x^3+22*x^2+12*x+2', 'y^2=8*x^6+3*x^5+3*x^4+15*x^3+20*x^2+16*x', 'y^2=17*x^6+15*x^5+15*x^4+6*x^3+8*x^2+11*x', 'y^2=18*x^6+6*x^5+12*x^4+20*x^2+9*x+22', 'y^2=21*x^6+12*x^5+19*x^4+14*x^3+12*x^2+16*x+8', 'y^2=22*x^6+14*x^5+13*x^4+3*x^3+17*x^2+11*x+9', 'y^2=x^6+x^5+2*x^4+8*x^3+17*x^2+9*x+22', 'y^2=5*x^6+5*x^5+10*x^4+17*x^3+16*x^2+22*x+18', 'y^2=10*x^6+5*x^5+19*x^4+3*x^3+10*x^2+3*x+20', 'y^2=4*x^6+2*x^5+3*x^4+15*x^3+4*x^2+15*x+8', 'y^2=9*x^6+17*x^5+22*x^4+18*x^2+12*x+21', 'y^2=4*x^6+11*x^5+20*x^4+9*x^3+12*x^2+16*x+16', 'y^2=20*x^6+9*x^5+8*x^4+22*x^3+14*x^2+11*x+11', 'y^2=9*x^6+16*x^5+12*x^4+19*x^3+15*x^2+18*x+5', 'y^2=22*x^6+11*x^5+14*x^4+3*x^3+6*x^2+21*x+2', 'y^2=21*x^6+19*x^5+15*x^4+5*x^3+4*x^2+16*x+14', 'y^2=x^6+20*x^5+3*x^4+22*x^2+21*x+19', 'y^2=5*x^6+8*x^5+15*x^4+18*x^2+13*x+3', 'y^2=10*x^6+6*x^5+x^4+15*x^3+16*x+14', 'y^2=4*x^6+7*x^5+5*x^4+6*x^3+11*x+1', 'y^2=10*x^6+2*x^5+22*x^4+14*x^3+17*x^2+10*x+21', 'y^2=4*x^6+10*x^5+18*x^4+x^3+16*x^2+4*x+13', 'y^2=10*x^6+22*x^5+9*x^4+22*x^3+8*x+22', 'y^2=5*x^6+13*x^5+7*x^4+20*x^3+17*x^2+22*x+21', 'y^2=2*x^6+19*x^5+12*x^4+8*x^3+16*x^2+18*x+13', 'y^2=9*x^6+18*x^5+7*x^4+14*x^3+9*x^2+2', 'y^2=22*x^6+21*x^5+12*x^4+x^3+22*x^2+10', 'y^2=2*x^6+18*x^5+22*x^4+12*x^3+6*x^2+7*x', 'y^2=4*x^6+12*x^5+9*x^4+22*x^2+22*x+17', 'y^2=6*x^5+18*x^4+8*x^3+15*x^2+8*x', 'y^2=20*x^6+4*x^5+12*x^4+19*x^3+3*x^2+17*x+21', 'y^2=8*x^6+20*x^5+14*x^4+3*x^3+15*x^2+16*x+13', 'y^2=9*x^6+16*x^4+11*x^3+5*x^2+3*x', 'y^2=15*x^6+5*x^5+11*x^4+19*x^3+6*x^2+17', 'y^2=6*x^6+2*x^5+9*x^4+3*x^3+7*x^2+16', 'y^2=14*x^6+3*x^5+19*x^4+2*x^3+15*x^2+22*x+10', 'y^2=17*x^6+5*x^5+17*x^4+3*x^3+5*x^2+17*x+6', 'y^2=3*x^5+7*x^4+9*x^3+13*x^2+3*x+19', 'y^2=15*x^5+12*x^4+22*x^3+19*x^2+15*x+3', 'y^2=15*x^5+11*x^3+7*x^2+14*x+16', 'y^2=6*x^5+9*x^3+12*x^2+x+11', 'y^2=12*x^6+21*x^5+5*x^4+3*x^3+13*x^2+22*x+10', 'y^2=7*x^5+9*x^4+17*x^3+21*x^2+10*x+12', 'y^2=13*x^6+20*x^5+15*x^4+16*x^2+10*x+2', 'y^2=19*x^6+8*x^5+6*x^4+11*x^2+4*x+10', 'y^2=3*x^6+6*x^5+19*x^4+x^3+16*x^2+22*x+14', 'y^2=15*x^6+7*x^5+3*x^4+5*x^3+11*x^2+18*x+1', 'y^2=x^6+20*x^5+18*x^4+8*x^3+6*x^2+6*x+8', 'y^2=5*x^6+8*x^5+21*x^4+17*x^3+7*x^2+7*x+17', 'y^2=6*x^6+6*x^5+20*x^4+x^3+8*x^2+4*x+4', 'y^2=7*x^6+7*x^5+8*x^4+5*x^3+17*x^2+20*x+20', 'y^2=3*x^6+11*x^5+12*x^4+3*x^3+14*x^2+22*x+7', 'y^2=8*x^6+12*x^5+6*x^4+14*x^3+x^2+2*x+3'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 14, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.120.1'], 'geometric_splitting_field': '2.0.120.1', 'geometric_splitting_polynomials': [[30, 0, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 82, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 82, 'label': '2.23.a_o', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 8, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.14400.4'], 'p': 23, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 14, 0, 529], 'poly_str': '1 0 14 0 529 ', 'primitive_models': [], 'q': 23, 'real_poly': [1, 0, -32], 'simple_distinct': ['2.23.a_o'], 'simple_factors': ['2.23.a_oA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-5*F^2-V'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.14400.4', 'splitting_polynomials': [[34, -4, 5, -2, 1]], 'twist_count': 4, 'twists': [['2.23.a_ao', '2.279841.coi_cwdcw', 4], ['2.23.ai_bg', '2.78310985281.auwmu_xrvxveio', 8], ['2.23.i_bg', '2.78310985281.auwmu_xrvxveio', 8]], 'weak_equivalence_count': 23, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 3600, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-5*F^2-V']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 13242
{'base_label': '2.23.a_o', 'extension_degree': 1, 'extension_label': '2.23.a_o', 'multiplicity': 1}
-
id: 13243
{'base_label': '2.23.a_o', 'extension_degree': 2, 'extension_label': '1.529.o', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.14400.4', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.23.a_o', 'galois_group': '4T2', 'places': [['185/23', '516/23', '10/23', '1/23'], ['300/23', '516/23', '10/23', '1/23'], ['277/23', '516/23', '10/23', '1/23'], ['392/23', '516/23', '10/23', '1/23']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.120.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.529.o', 'galois_group': '2T1', 'places': [['19', '1'], ['4', '1']]}