L(s) = 1 | + 2·3-s + 4·7-s + 6·11-s − 2·13-s + 2·19-s + 8·21-s + 6·23-s − 2·27-s − 12·29-s − 10·31-s + 12·33-s + 8·37-s − 4·39-s + 10·43-s + 12·47-s − 2·49-s + 4·57-s + 6·59-s + 4·61-s − 8·67-s + 12·69-s − 6·71-s + 8·73-s + 24·77-s − 4·79-s − 81-s − 12·83-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.51·7-s + 1.80·11-s − 0.554·13-s + 0.458·19-s + 1.74·21-s + 1.25·23-s − 0.384·27-s − 2.22·29-s − 1.79·31-s + 2.08·33-s + 1.31·37-s − 0.640·39-s + 1.52·43-s + 1.75·47-s − 2/7·49-s + 0.529·57-s + 0.781·59-s + 0.512·61-s − 0.977·67-s + 1.44·69-s − 0.712·71-s + 0.936·73-s + 2.73·77-s − 0.450·79-s − 1/9·81-s − 1.31·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.537423767\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.537423767\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.360967602506322930488406972059, −8.149302797345292283789720749841, −7.56529966381496853131630373242, −7.37402774901200435038193669476, −7.19942446387734033625674059369, −6.83934690187191850691686630739, −6.07081110768405774792031242144, −5.89218354231820530106595115945, −5.41777375243067217362024377236, −5.19250508640671902539408678102, −4.53535921777301995898221240981, −4.28057766992217223619736930245, −3.89461984831902207812229647421, −3.56265407230517161522276877037, −2.98374483108912990385152223901, −2.69336812107681752038983976709, −1.94395657180881001617537923733, −1.85407883614589104412159820560, −1.24822697167071408040488332500, −0.64671634344299014659495817708,
0.64671634344299014659495817708, 1.24822697167071408040488332500, 1.85407883614589104412159820560, 1.94395657180881001617537923733, 2.69336812107681752038983976709, 2.98374483108912990385152223901, 3.56265407230517161522276877037, 3.89461984831902207812229647421, 4.28057766992217223619736930245, 4.53535921777301995898221240981, 5.19250508640671902539408678102, 5.41777375243067217362024377236, 5.89218354231820530106595115945, 6.07081110768405774792031242144, 6.83934690187191850691686630739, 7.19942446387734033625674059369, 7.37402774901200435038193669476, 7.56529966381496853131630373242, 8.149302797345292283789720749841, 8.360967602506322930488406972059