Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 10 x + 60 x^{2} + 310 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.494392678941$, $\pm0.868316644137$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.39744.5 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
Isomorphism classes: | 76 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1342$ | $942084$ | $891438262$ | $851270870736$ | $819455142678502$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $982$ | $29922$ | $921766$ | $28623102$ | $887610022$ | $27512333142$ | $852891029758$ | $26439611944362$ | $819628374512902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=8 x^6+x^5+28 x^4+26 x^3+3 x^2+2 x+30$
- $y^2=4 x^6+20 x^5+22 x^4+7 x^3+17 x^2+23 x$
- $y^2=2 x^6+14 x^5+20 x^4+29 x^3+28 x^2+18 x+18$
- $y^2=25 x^6+29 x^5+17 x^4+24 x^3+8 x^2+7 x+16$
- $y^2=26 x^6+28 x^5+14 x^4+17 x^3+16 x^2+28$
- $y^2=17 x^6+8 x^5+25 x^4+5 x^3+15 x^2+12 x$
- $y^2=8 x^6+7 x^5+22 x^4+17 x^3+2 x^2+27 x+26$
- $y^2=20 x^6+27 x^5+23 x^4+10 x^3+17 x^2+11 x+21$
- $y^2=11 x^6+x^5+24 x^4+21 x^3+16 x^2+6 x+15$
- $y^2=12 x^6+27 x^5+28 x^4+16 x^2+19 x+29$
- $y^2=2 x^6+7 x^5+15 x^4+27 x^3+22 x^2+30 x+29$
- $y^2=7 x^6+4 x^5+28 x^4+15 x^3+30 x^2+22 x+4$
- $y^2=17 x^6+18 x^5+21 x^4+21 x^3+23 x^2+x+10$
- $y^2=17 x^6+25 x^5+12 x^4+x^3+22 x^2+19 x+10$
- $y^2=20 x^6+3 x^5+15 x^4+19 x^3+30 x^2+27 x+15$
- $y^2=16 x^6+6 x^5+15 x^4+25 x^3+4 x^2+x+3$
- $y^2=5 x^6+24 x^5+15 x^4+29 x^3+8 x+28$
- $y^2=20 x^6+29 x^5+12 x^4+21 x^3+21 x^2+26 x+11$
- $y^2=27 x^6+17 x^5+11 x^4+22 x^3+11 x^2+3 x+28$
- $y^2=16 x^6+20 x^5+20 x^4+24 x^3+21 x^2+4 x+1$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.39744.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.ak_ci | $2$ | (not in LMFDB) |