Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 22 x^{2} + 289 x^{4}$ |
Frobenius angles: | $\pm0.362000597417$, $\pm0.637999402583$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-14})\) |
Galois group: | $C_2^2$ |
Jacobians: | $50$ |
Isomorphism classes: | 88 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $312$ | $97344$ | $24129144$ | $6991635456$ | $2015992855032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $334$ | $4914$ | $83710$ | $1419858$ | $24120718$ | $410338674$ | $6976073854$ | $118587876498$ | $2015991809614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=4 x^6+15 x^5+11 x^4+10 x^3+2 x^2+16 x+7$
- $y^2=12 x^6+11 x^5+16 x^4+13 x^3+6 x^2+14 x+4$
- $y^2=12 x^6+9 x^4+2 x^3+3 x^2+5 x$
- $y^2=2 x^6+10 x^4+6 x^3+9 x^2+15 x$
- $y^2=9 x^6+7 x^5+7 x^4+x^3+13 x^2+8 x+8$
- $y^2=13 x^6+12 x^5+6 x^4+9 x^3+x^2+x+6$
- $y^2=x^6+4 x^5+4 x^4+16 x^3+12 x^2+4 x+6$
- $y^2=3 x^6+12 x^5+12 x^4+14 x^3+2 x^2+12 x+1$
- $y^2=15 x^6+16 x^5+15 x^4+14 x^3+10 x^2+3 x+15$
- $y^2=11 x^6+14 x^5+11 x^4+8 x^3+13 x^2+9 x+11$
- $y^2=9 x^5+10 x^4+12 x^3+15 x^2+15 x+11$
- $y^2=10 x^5+13 x^4+2 x^3+11 x^2+11 x+16$
- $y^2=7 x^6+8 x^5+12 x^4+15 x^3+6 x^2+10 x$
- $y^2=4 x^6+7 x^5+2 x^4+11 x^3+x^2+13 x$
- $y^2=2 x^6+15 x^5+8 x^4+14 x^2+9$
- $y^2=7 x^6+13 x^5+5 x^4+10 x^3+13 x^2+2$
- $y^2=4 x^6+5 x^5+15 x^4+13 x^3+5 x^2+6$
- $y^2=8 x^6+9 x^5+6 x^4+x^2+4 x+5$
- $y^2=11 x^6+10 x^5+11 x^4+6 x^3+9 x^2+x+12$
- $y^2=16 x^6+13 x^5+16 x^4+x^3+10 x^2+3 x+2$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-14})\). |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.w 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.a_aw | $4$ | (not in LMFDB) |
2.17.ag_bd | $12$ | (not in LMFDB) |
2.17.g_bd | $12$ | (not in LMFDB) |