| L(s) = 1 | − 2·2-s + 3-s + 3·4-s − 5-s − 2·6-s − 2·7-s − 4·8-s − 9-s + 2·10-s − 9·11-s + 3·12-s − 5·13-s + 4·14-s − 15-s + 5·16-s + 4·17-s + 2·18-s − 3·20-s − 2·21-s + 18·22-s + 3·23-s − 4·24-s − 5·25-s + 10·26-s − 6·28-s − 4·29-s + 2·30-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.447·5-s − 0.816·6-s − 0.755·7-s − 1.41·8-s − 1/3·9-s + 0.632·10-s − 2.71·11-s + 0.866·12-s − 1.38·13-s + 1.06·14-s − 0.258·15-s + 5/4·16-s + 0.970·17-s + 0.471·18-s − 0.670·20-s − 0.436·21-s + 3.83·22-s + 0.625·23-s − 0.816·24-s − 25-s + 1.96·26-s − 1.13·28-s − 0.742·29-s + 0.365·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25542916 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25542916 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.938699140937639407942253480574, −7.76995769402685508933090579984, −7.50101783970925971195529880459, −7.36514741694795920594298522843, −6.74755899223569457547927976336, −6.52145831223007962725186688641, −5.77397714662177227051718741054, −5.61206238635669801138200175016, −5.15613519116512244095218322243, −5.01231298280523420693828797195, −4.25081088536293641574505687853, −3.70510269013130893257637203443, −3.12769526624377122873826365303, −3.05755649708403679259600780303, −2.44100410852304892721369829543, −2.33773556504755878410887672981, −1.71183351456946573959201295640, −0.796313127913351791602583661283, 0, 0,
0.796313127913351791602583661283, 1.71183351456946573959201295640, 2.33773556504755878410887672981, 2.44100410852304892721369829543, 3.05755649708403679259600780303, 3.12769526624377122873826365303, 3.70510269013130893257637203443, 4.25081088536293641574505687853, 5.01231298280523420693828797195, 5.15613519116512244095218322243, 5.61206238635669801138200175016, 5.77397714662177227051718741054, 6.52145831223007962725186688641, 6.74755899223569457547927976336, 7.36514741694795920594298522843, 7.50101783970925971195529880459, 7.76995769402685508933090579984, 7.938699140937639407942253480574