Properties

Label 2.41.d_bu
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 + 3 x + 46 x^{2} + 123 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.380791874985$, $\pm0.704861019056$
Angle rank:  $2$ (numerical)
Number field:  4.0.4308412.1
Galois group:  $D_{4}$
Jacobians:  $120$
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1854$ $2970108$ $4748768856$ $7992251736768$ $13420087915503294$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $45$ $1765$ $68904$ $2828353$ $115834005$ $4749914338$ $194755576221$ $7984928432449$ $327381925547736$ $13422659348378965$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is 4.0.4308412.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ad_bu$2$(not in LMFDB)