Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 46 x^{2} + 123 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.380791874985$, $\pm0.704861019056$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4308412.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $120$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1854$ | $2970108$ | $4748768856$ | $7992251736768$ | $13420087915503294$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $45$ | $1765$ | $68904$ | $2828353$ | $115834005$ | $4749914338$ | $194755576221$ | $7984928432449$ | $327381925547736$ | $13422659348378965$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=4 x^6+2 x^5+36 x^4+38 x^3+3 x^2+37 x+25$
- $y^2=26 x^6+26 x^5+9 x^4+14 x^3+28 x^2+31 x+24$
- $y^2=3 x^6+17 x^5+35 x^4+16 x^3+2 x^2+27$
- $y^2=31 x^6+27 x^5+33 x^4+38 x^3+8 x^2+29 x+22$
- $y^2=40 x^6+39 x^5+x^4+24 x^3+36 x^2+x+2$
- $y^2=23 x^6+8 x^5+37 x^4+6 x^3+20 x^2+31 x+17$
- $y^2=23 x^6+4 x^5+2 x^4+24 x^3+22 x^2+10 x+18$
- $y^2=23 x^6+24 x^5+24 x^4+25 x^3+27 x^2+36 x+36$
- $y^2=20 x^6+36 x^5+40 x^4+32 x^3+15 x^2+32 x+2$
- $y^2=39 x^6+9 x^5+40 x^4+9 x^3+32 x^2+32 x+5$
- $y^2=4 x^6+4 x^5+29 x^4+13 x^3+11 x^2+7 x+29$
- $y^2=28 x^6+31 x^5+24 x^4+31 x^3+36 x^2+8 x+21$
- $y^2=15 x^6+8 x^5+5 x^4+16 x^3+6 x^2+27 x+4$
- $y^2=2 x^6+6 x^5+30 x^4+5 x^3+14 x^2+13 x+33$
- $y^2=36 x^6+12 x^5+39 x^4+11 x^3+35 x^2+15 x+10$
- $y^2=3 x^6+13 x^5+36 x^4+2 x^3+28 x^2+16 x+15$
- $y^2=40 x^6+18 x^5+15 x^4+14 x^3+26 x^2+13 x+20$
- $y^2=33 x^6+39 x^5+6 x^4+37 x^3+23 x^2+3 x+25$
- $y^2=24 x^5+17 x^4+6 x^3+32 x+20$
- $y^2=30 x^6+21 x^5+34 x^4+20 x^3+37 x^2+33 x+20$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.4308412.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.ad_bu | $2$ | (not in LMFDB) |