Properties

Label 2.79.am_ew
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 - 12 x + 126 x^{2} - 948 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.204082498118$, $\pm0.540329210109$
Angle rank:  $2$ (numerical)
Number field:  4.0.3757.1
Galois group:  $D_{4}$
Jacobians:  $448$
Cyclic group of points:    no
Non-cyclic primes:   $2, 13$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5408$ $39629824$ $243070439456$ $1517091168206848$ $9468818851876256288$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $68$ $6350$ $493004$ $38949630$ $3077232788$ $243088920974$ $19203904142876$ $1517108737176958$ $119851596008527844$ $9468276078364372430$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 448 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.3757.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.m_ew$2$(not in LMFDB)