Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 9 x + 56 x^{2} + 639 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.388005265915$, $\pm0.841574650054$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.57800.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $132$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5746$ | $25569700$ | $128506968616$ | $645816367591200$ | $3254971264150777366$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $81$ | $5073$ | $359046$ | $25414153$ | $1804078431$ | $128100622938$ | $9095118263361$ | $645753613298353$ | $45848500630258986$ | $3255243546710591673$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=66 x^6+38 x^5+36 x^4+26 x^3+6 x^2+30 x+68$
- $y^2=29 x^6+48 x^5+18 x^4+48 x^3+62 x^2+49 x+10$
- $y^2=48 x^6+53 x^5+39 x^4+12 x^3+26 x^2+48 x+43$
- $y^2=22 x^6+43 x^5+3 x^4+30 x^3+15 x^2+57 x+3$
- $y^2=10 x^6+5 x^5+64 x^4+58 x^3+7 x^2+12 x+64$
- $y^2=22 x^6+17 x^4+46 x^3+23 x^2+6 x+14$
- $y^2=56 x^6+20 x^5+4 x^4+21 x^3+55 x^2+42 x+27$
- $y^2=58 x^6+50 x^5+5 x^4+19 x^3+59 x^2+35 x+57$
- $y^2=40 x^6+22 x^5+67 x^4+21 x^3+57 x^2+21 x+6$
- $y^2=37 x^6+61 x^5+69 x^4+26 x^3+61 x^2+50 x+19$
- $y^2=47 x^6+3 x^5+40 x^4+21 x^3+25 x^2+17 x+54$
- $y^2=19 x^6+61 x^5+44 x^4+39 x^3+23 x^2+62 x+63$
- $y^2=70 x^6+29 x^5+21 x^4+18 x^3+18 x^2+x+64$
- $y^2=42 x^6+34 x^5+47 x^4+49 x^3+6 x^2+66 x+64$
- $y^2=64 x^6+43 x^5+39 x^4+67 x^3+69 x^2+21 x+34$
- $y^2=25 x^6+33 x^5+16 x^4+7 x^3+x^2+46 x+7$
- $y^2=12 x^6+12 x^5+45 x^4+20 x^3+8 x^2+66 x+1$
- $y^2=2 x^6+38 x^5+8 x^4+55 x^3+18 x^2+7 x+49$
- $y^2=49 x^6+46 x^5+12 x^4+64 x^3+59 x^2+53 x+57$
- $y^2=6 x^6+29 x^5+27 x^4+27 x^3+62 x^2+5 x+43$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.57800.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.aj_ce | $2$ | (not in LMFDB) |