Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + x + 83 x^{2} )^{2}$ |
| $1 + 2 x + 167 x^{2} + 166 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.517478306302$, $\pm0.517478306302$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $45$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $5, 17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7225$ | $49773025$ | $326657971600$ | $2251016163765625$ | $15516309295226355625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $7220$ | $571292$ | $47431428$ | $3939108706$ | $326942537510$ | $27136043176342$ | $2252292060328708$ | $186940256087853476$ | $15516041200645798100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=33 x^6+26 x^5+61 x^4+35 x^3+25 x^2+36 x+75$
- $y^2=8 x^6+x^5+48 x^4+23 x^3+9 x^2+41 x+68$
- $y^2=48 x^6+57 x^5+45 x^4+37 x^3+39 x^2+39 x+42$
- $y^2=66 x^6+24 x^5+36 x^4+70 x^3+36 x^2+24 x+66$
- $y^2=39 x^6+22 x^5+44 x^4+29 x^3+34 x^2+31 x+17$
- $y^2=18 x^6+65 x^5+64 x^4+67 x^3+78 x^2+80 x+70$
- $y^2=9 x^6+80 x^5+34 x^4+61 x^3+27 x^2+34 x+45$
- $y^2=66 x^6+78 x^5+33 x^4+54 x^3+80 x^2+10 x+77$
- $y^2=14 x^6+7 x^5+32 x^4+74 x^3+32 x^2+7 x+14$
- $y^2=40 x^6+52 x^5+81 x^4+28 x^3+81 x^2+52 x+40$
- $y^2=35 x^6+11 x^5+60 x^4+76 x^3+61 x^2+69 x+53$
- $y^2=6 x^6+78 x^5+54 x^4+70 x^3+70 x^2+50 x+43$
- $y^2=50 x^6+65 x^5+12 x^4+50 x^3+12 x^2+65 x+50$
- $y^2=65 x^6+13 x^5+10 x^4+39 x^3+47 x^2+62 x+77$
- $y^2=44 x^6+75 x^5+23 x^4+25 x^3+60 x^2+11 x+35$
- $y^2=18 x^6+71 x^5+21 x^4+11 x^3+56 x^2+79 x+46$
- $y^2=66 x^6+39 x^5+63 x^4+63 x^2+39 x+66$
- $y^2=60 x^6+29 x^5+21 x^4+74 x^3+21 x^2+29 x+60$
- $y^2=58 x^6+34 x^5+50 x^4+21 x^3+50 x^2+34 x+58$
- $y^2=17 x^6+75 x^5+12 x^4+67 x^3+76 x^2+10 x+30$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-331}) \)$)$ |
Base change
This is a primitive isogeny class.