Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 11 x + 220 x^{2} - 1067 x^{3} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.374587737883$, $\pm0.444149471859$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8991368.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $54$ |
| Isomorphism classes: | 54 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8552$ | $91574816$ | $835465302176$ | $7836170191592576$ | $73739722394589187752$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $87$ | $9729$ | $915402$ | $88515009$ | $8587026967$ | $832971608094$ | $80798308139895$ | $7837433741973633$ | $760231057596867786$ | $73742412674367836929$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=32 x^6+79 x^5+69 x^4+8 x^3+65 x^2+77 x+60$
- $y^2=8 x^6+57 x^5+x^4+50 x^3+90 x^2+88 x+52$
- $y^2=84 x^6+13 x^5+36 x^4+79 x^3+49 x^2+42 x+58$
- $y^2=51 x^6+89 x^5+81 x^4+88 x^3+92 x^2+57 x+34$
- $y^2=47 x^6+89 x^5+63 x^4+53 x^3+74 x^2+11 x+51$
- $y^2=11 x^6+34 x^5+79 x^4+52 x^3+11 x^2+72 x+50$
- $y^2=8 x^6+21 x^5+46 x^4+63 x^3+27 x^2+53 x+51$
- $y^2=21 x^6+58 x^5+28 x^4+7 x^3+77 x^2+71 x+61$
- $y^2=67 x^6+34 x^5+10 x^4+60 x^3+29 x^2+64 x+68$
- $y^2=70 x^6+9 x^5+45 x^4+68 x^3+9 x^2+33 x+63$
- $y^2=59 x^6+73 x^5+39 x^4+68 x^3+29 x^2+73 x+58$
- $y^2=39 x^6+26 x^5+53 x^4+85 x^3+67 x+83$
- $y^2=13 x^6+4 x^5+60 x^4+49 x^3+85 x^2+43 x+71$
- $y^2=80 x^6+33 x^5+78 x^4+16 x^3+34 x^2+17 x+19$
- $y^2=26 x^6+23 x^5+89 x^4+15 x^3+59 x^2+77 x+33$
- $y^2=82 x^6+68 x^5+58 x^4+54 x^3+x^2+17 x+17$
- $y^2=21 x^6+92 x^5+81 x^4+66 x^3+83 x^2+51 x+86$
- $y^2=55 x^6+9 x^5+14 x^4+74 x^3+28 x^2+50 x+74$
- $y^2=42 x^6+27 x^5+54 x^4+28 x^3+42 x^2+16 x+35$
- $y^2=95 x^6+52 x^5+38 x^4+73 x^3+78 x^2+44 x+63$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is 4.0.8991368.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.97.l_im | $2$ | (not in LMFDB) |