Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x + 148 x^{2} - 365 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.413985897192$, $\pm0.491831850955$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.5717576.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $66$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5108$ | $29871584$ | $151724109056$ | $806016706514816$ | $4297417439363237268$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $69$ | $5601$ | $390018$ | $28382625$ | $2072971069$ | $151334955822$ | $11047406015253$ | $806460067935489$ | $58871586281020914$ | $4297625829961614961$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=61 x^6+7 x^5+64 x^4+59 x^3+18 x+24$
- $y^2=64 x^6+30 x^5+51 x^4+11 x^3+43 x^2+40 x+16$
- $y^2=58 x^6+65 x^5+17 x^4+40 x^3+10 x^2+29 x+6$
- $y^2=55 x^6+21 x^5+44 x^4+23 x^3+28 x^2+34 x+2$
- $y^2=66 x^6+44 x^5+x^4+15 x^3+51 x^2+58$
- $y^2=16 x^6+25 x^5+57 x^4+44 x^3+70 x^2+41 x+26$
- $y^2=44 x^6+29 x^5+29 x^4+43 x^3+20 x^2+47 x+64$
- $y^2=45 x^6+38 x^5+69 x^4+67 x^3+39 x^2+41 x+5$
- $y^2=65 x^6+48 x^5+7 x^4+61 x^3+4 x^2+51 x+15$
- $y^2=60 x^6+42 x^5+71 x^4+20 x^3+6 x^2+40 x+58$
- $y^2=47 x^6+36 x^5+32 x^4+43 x^3+46 x^2+x+9$
- $y^2=35 x^6+17 x^5+46 x^4+57 x^3+48 x^2+36 x+36$
- $y^2=24 x^6+72 x^5+9 x^4+66 x^3+59 x^2+34 x+33$
- $y^2=70 x^6+22 x^5+64 x^4+67 x^3+64 x^2+43 x+69$
- $y^2=26 x^6+27 x^5+14 x^4+20 x^3+26 x^2+42 x+68$
- $y^2=22 x^6+19 x^5+28 x^4+52 x^3+38 x^2+44 x+7$
- $y^2=70 x^6+11 x^5+4 x^4+21 x^3+52 x^2+22 x+20$
- $y^2=29 x^6+41 x^5+41 x^4+40 x^3+37 x^2+56 x+60$
- $y^2=12 x^6+41 x^5+47 x^4+39 x^3+3 x^2+5 x+9$
- $y^2=37 x^6+7 x^5+24 x^4+36 x^3+60 x^2+64 x+17$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.5717576.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.f_fs | $2$ | (not in LMFDB) |