Properties

Label 2.73.af_fs
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 5 x + 148 x^{2} - 365 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.413985897192$, $\pm0.491831850955$
Angle rank:  $2$ (numerical)
Number field:  4.0.5717576.2
Galois group:  $D_{4}$
Jacobians:  $66$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5108$ $29871584$ $151724109056$ $806016706514816$ $4297417439363237268$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $69$ $5601$ $390018$ $28382625$ $2072971069$ $151334955822$ $11047406015253$ $806460067935489$ $58871586281020914$ $4297625829961614961$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.5717576.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.f_fs$2$(not in LMFDB)