-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 5108, 'abvar_counts': [5108, 29871584, 151724109056, 806016706514816, 4297417439363237268, 22902158449923487195136, 122045096852787821767215572, 650377860496160311927981858304, 3465863696396398550598896336524544, 18469587773244226049405268791515955424], 'abvar_counts_str': '5108 29871584 151724109056 806016706514816 4297417439363237268 22902158449923487195136 122045096852787821767215572 650377860496160311927981858304 3465863696396398550598896336524544 18469587773244226049405268791515955424 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.413985897192149, 0.491831850955381], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 69, 'curve_counts': [69, 5601, 390018, 28382625, 2072971069, 151334955822, 11047406015253, 806460067935489, 58871586281020914, 4297625829961614961], 'curve_counts_str': '69 5601 390018 28382625 2072971069 151334955822 11047406015253 806460067935489 58871586281020914 4297625829961614961 ', 'curves': ['y^2=61*x^6+7*x^5+64*x^4+59*x^3+18*x+24', 'y^2=64*x^6+30*x^5+51*x^4+11*x^3+43*x^2+40*x+16', 'y^2=58*x^6+65*x^5+17*x^4+40*x^3+10*x^2+29*x+6', 'y^2=55*x^6+21*x^5+44*x^4+23*x^3+28*x^2+34*x+2', 'y^2=66*x^6+44*x^5+x^4+15*x^3+51*x^2+58', 'y^2=16*x^6+25*x^5+57*x^4+44*x^3+70*x^2+41*x+26', 'y^2=44*x^6+29*x^5+29*x^4+43*x^3+20*x^2+47*x+64', 'y^2=45*x^6+38*x^5+69*x^4+67*x^3+39*x^2+41*x+5', 'y^2=65*x^6+48*x^5+7*x^4+61*x^3+4*x^2+51*x+15', 'y^2=60*x^6+42*x^5+71*x^4+20*x^3+6*x^2+40*x+58', 'y^2=47*x^6+36*x^5+32*x^4+43*x^3+46*x^2+x+9', 'y^2=35*x^6+17*x^5+46*x^4+57*x^3+48*x^2+36*x+36', 'y^2=24*x^6+72*x^5+9*x^4+66*x^3+59*x^2+34*x+33', 'y^2=70*x^6+22*x^5+64*x^4+67*x^3+64*x^2+43*x+69', 'y^2=26*x^6+27*x^5+14*x^4+20*x^3+26*x^2+42*x+68', 'y^2=22*x^6+19*x^5+28*x^4+52*x^3+38*x^2+44*x+7', 'y^2=70*x^6+11*x^5+4*x^4+21*x^3+52*x^2+22*x+20', 'y^2=29*x^6+41*x^5+41*x^4+40*x^3+37*x^2+56*x+60', 'y^2=12*x^6+41*x^5+47*x^4+39*x^3+3*x^2+5*x+9', 'y^2=37*x^6+7*x^5+24*x^4+36*x^3+60*x^2+64*x+17', 'y^2=55*x^6+22*x^5+4*x^4+37*x^3+38*x^2+67*x+69', 'y^2=22*x^6+49*x^5+65*x^4+66*x^3+52*x^2+16*x+49', 'y^2=24*x^6+20*x^5+x^4+44*x^3+52*x^2+71*x+41', 'y^2=20*x^6+66*x^5+42*x^4+20*x^3+22*x^2+52*x+63', 'y^2=16*x^6+21*x^5+13*x^4+51*x^3+10*x^2+62*x+4', 'y^2=9*x^6+20*x^5+7*x^4+16*x^3+21*x^2+51*x+3', 'y^2=5*x^6+24*x^5+7*x^4+5*x^3+38*x^2+16*x+3', 'y^2=9*x^6+66*x^5+5*x^4+71*x^3+45*x^2+x+7', 'y^2=55*x^6+16*x^5+65*x^4+51*x^3+38*x^2+62*x+40', 'y^2=14*x^6+28*x^5+66*x^4+71*x^3+43*x^2+11*x+33', 'y^2=60*x^6+48*x^5+47*x^4+40*x^3+64*x^2+24*x+26', 'y^2=61*x^6+10*x^5+45*x^4+11*x^3+49*x^2+54*x+60', 'y^2=34*x^6+17*x^5+32*x^4+63*x^3+62*x^2+17*x+14', 'y^2=63*x^6+42*x^5+13*x^4+41*x^3+20*x^2+66*x+28', 'y^2=25*x^6+70*x^5+68*x^4+11*x^3+33*x^2+10*x+20', 'y^2=71*x^6+31*x^5+37*x^3+54*x^2+33*x+29', 'y^2=58*x^6+22*x^5+5*x^4+35*x^3+6*x^2+18*x+59', 'y^2=17*x^6+9*x^5+41*x^4+47*x^3+47*x^2+54*x+34', 'y^2=37*x^6+41*x^5+53*x^4+66*x^3+64*x^2+3*x+62', 'y^2=70*x^6+x^5+45*x^4+47*x^3+22*x^2+35*x+34', 'y^2=53*x^6+66*x^5+59*x^4+39*x^3+6*x^2+15*x+48', 'y^2=55*x^6+40*x^4+2*x^3+68*x^2+23*x+25', 'y^2=10*x^6+40*x^5+70*x^4+11*x^3+6*x^2+59*x+9', 'y^2=63*x^6+31*x^4+37*x^3+70*x^2+69*x+15', 'y^2=24*x^6+69*x^5+24*x^4+38*x^3+44*x^2+33*x+13', 'y^2=49*x^6+55*x^5+37*x^4+25*x^3+72*x^2+29*x+58', 'y^2=28*x^6+3*x^5+52*x^4+18*x^3+50*x^2+68*x+70', 'y^2=64*x^6+25*x^5+13*x^4+52*x^3+20*x^2+55*x+17', 'y^2=18*x^6+47*x^5+72*x^4+64*x^3+59*x^2+60*x+67', 'y^2=56*x^6+59*x^5+36*x^4+25*x^3+39*x^2+43*x+59', 'y^2=52*x^6+61*x^5+14*x^4+7*x^3+40*x^2+3*x+1', 'y^2=68*x^6+33*x^5+28*x^4+49*x^3+12*x^2+67*x+19', 'y^2=68*x^6+33*x^5+57*x^4+22*x^3+44*x^2+12*x+46', 'y^2=53*x^6+25*x^5+4*x^4+61*x^2+12*x+36', 'y^2=8*x^6+63*x^5+46*x^4+58*x^3+33*x^2+52*x+59', 'y^2=41*x^6+32*x^5+63*x^4+56*x^3+49*x^2+60*x+13', 'y^2=52*x^6+15*x^5+58*x^4+28*x^3+10*x^2+35*x+61', 'y^2=61*x^6+39*x^5+9*x^4+43*x^3+57*x^2+22*x+50', 'y^2=29*x^6+39*x^5+19*x^4+12*x^3+17*x^2+24*x+70', 'y^2=66*x^6+5*x^5+62*x^4+51*x^3+33*x^2+17*x+60', 'y^2=47*x^6+61*x^5+2*x^4+29*x^3+2*x^2+55*x+52', 'y^2=62*x^6+39*x^5+39*x^4+26*x^3+41*x^2+32*x+45', 'y^2=31*x^5+69*x^4+61*x^3+67*x^2+9', 'y^2=40*x^6+29*x^5+58*x^4+27*x^3+72*x^2+42*x+7', 'y^2=29*x^6+48*x^5+25*x^4+70*x^3+9*x^2+63*x+19', 'y^2=72*x^6+33*x^5+43*x^4+64*x^3+54*x^2+32*x+67'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.5717576.2'], 'geometric_splitting_field': '4.0.5717576.2', 'geometric_splitting_polynomials': [[5108, -80, 139, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 66, 'is_cyclic': False, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 66, 'label': '2.73.af_fs', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['4.0.5717576.2'], 'p': 73, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -5, 148, -365, 5329], 'poly_str': '1 -5 148 -365 5329 ', 'primitive_models': [], 'q': 73, 'real_poly': [1, -5, 2], 'simple_distinct': ['2.73.af_fs'], 'simple_factors': ['2.73.af_fsA'], 'simple_multiplicities': [1], 'singular_primes': ['2,2*F+V-3'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.5717576.2', 'splitting_polynomials': [[5108, -80, 139, -1, 1]], 'twist_count': 2, 'twists': [['2.73.f_fs', '2.5329.kl_bqua', 2]], 'weak_equivalence_count': 2, 'zfv_index': 2, 'zfv_index_factorization': [[2, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 79136, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,2*F+V-3']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.73.af_fs', 'extension_degree': 1, 'extension_label': '2.73.af_fs', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.5717576.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.73.af_fs', 'galois_group': '4T3', 'places': [['5108/73', '141/73', '5327/73', '1/73'], ['1', '1', '0', '0']]}