L(s) = 1 | − 2·7-s + 4·11-s − 4·13-s − 8·17-s − 4·23-s + 2·25-s + 4·29-s − 8·31-s + 4·37-s − 16·41-s + 16·43-s − 8·47-s + 3·49-s − 4·53-s − 16·59-s + 4·61-s − 8·67-s − 12·71-s + 12·73-s − 8·77-s − 8·79-s − 8·83-s + 8·91-s − 4·97-s − 24·101-s − 8·103-s + 4·107-s + ⋯ |
L(s) = 1 | − 0.755·7-s + 1.20·11-s − 1.10·13-s − 1.94·17-s − 0.834·23-s + 2/5·25-s + 0.742·29-s − 1.43·31-s + 0.657·37-s − 2.49·41-s + 2.43·43-s − 1.16·47-s + 3/7·49-s − 0.549·53-s − 2.08·59-s + 0.512·61-s − 0.977·67-s − 1.42·71-s + 1.40·73-s − 0.911·77-s − 0.900·79-s − 0.878·83-s + 0.838·91-s − 0.406·97-s − 2.38·101-s − 0.788·103-s + 0.386·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.195438326036946941655415211622, −7.992846356885766983001991000556, −7.37136082751707015251643770465, −7.12501562426161995283832293308, −6.67982625313640665743777995138, −6.61355207700725938194063597725, −6.09965788745713556658947745090, −5.75314205747752928299971741415, −5.31828070953430080844729252017, −4.67967400312300377332191244689, −4.35540955853370115709450187940, −4.30895469453670692609610459919, −3.53038146336328772307829236318, −3.26225690426445148421076976505, −2.66783289303193059459661940737, −2.27057239513044932154201661692, −1.73507727708640153423590662462, −1.21568558898854458089765081722, 0, 0,
1.21568558898854458089765081722, 1.73507727708640153423590662462, 2.27057239513044932154201661692, 2.66783289303193059459661940737, 3.26225690426445148421076976505, 3.53038146336328772307829236318, 4.30895469453670692609610459919, 4.35540955853370115709450187940, 4.67967400312300377332191244689, 5.31828070953430080844729252017, 5.75314205747752928299971741415, 6.09965788745713556658947745090, 6.61355207700725938194063597725, 6.67982625313640665743777995138, 7.12501562426161995283832293308, 7.37136082751707015251643770465, 7.992846356885766983001991000556, 8.195438326036946941655415211622