Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 166 x^{2} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.441225852779$, $\pm0.558774147221$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-86})\) |
Galois group: | $C_2^2$ |
Jacobians: | $268$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8088$ | $65415744$ | $496981920600$ | $3935119143158784$ | $31181719926926551128$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $8254$ | $704970$ | $62718814$ | $5584059450$ | $496982550238$ | $44231334895530$ | $3936588782235454$ | $350356403707485210$ | $31181719923886918654$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 268 curves (of which all are hyperelliptic):
- $y^2=33 x^6+56 x^5+48 x^4+43 x^3+31 x^2+9 x+65$
- $y^2=10 x^6+79 x^5+55 x^4+40 x^3+4 x^2+27 x+17$
- $y^2=9 x^6+27 x^5+52 x^4+24 x^3+63 x^2+86 x+44$
- $y^2=27 x^6+81 x^5+67 x^4+72 x^3+11 x^2+80 x+43$
- $y^2=45 x^6+53 x^5+14 x^4+38 x^3+47 x^2+53 x+16$
- $y^2=46 x^6+70 x^5+42 x^4+25 x^3+52 x^2+70 x+48$
- $y^2=8 x^6+79 x^5+49 x^4+72 x^2+61 x+78$
- $y^2=24 x^6+59 x^5+58 x^4+38 x^2+5 x+56$
- $y^2=x^6+x^3+77$
- $y^2=28 x^6+80 x^5+32 x^4+33 x^3+82 x^2+39 x+31$
- $y^2=84 x^6+62 x^5+7 x^4+10 x^3+68 x^2+28 x+4$
- $y^2=63 x^6+39 x^5+2 x^4+47 x^3+10 x^2+46 x+65$
- $y^2=11 x^6+28 x^5+6 x^4+52 x^3+30 x^2+49 x+17$
- $y^2=73 x^6+17 x^5+55 x^4+2 x^3+33 x^2+69 x+72$
- $y^2=41 x^6+51 x^5+76 x^4+6 x^3+10 x^2+29 x+38$
- $y^2=3 x^6+56 x^5+3 x^4+88 x^3+22 x^2+20 x+66$
- $y^2=9 x^6+79 x^5+9 x^4+86 x^3+66 x^2+60 x+20$
- $y^2=6 x^6+71 x^5+34 x^4+70 x^3+21 x^2+79 x+30$
- $y^2=35 x^6+31 x^5+48 x^4+22 x^3+54 x^2+40 x+64$
- $y^2=16 x^6+4 x^5+55 x^4+66 x^3+73 x^2+31 x+14$
- and 248 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-86})\). |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.gk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-258}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.a_agk | $4$ | (not in LMFDB) |
2.89.ag_dx | $12$ | (not in LMFDB) |
2.89.g_dx | $12$ | (not in LMFDB) |