Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x + 38 x^{2} + 92 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.451221489477$, $\pm0.692929747905$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.201024.4 |
| Galois group: | $D_{4}$ |
| Jacobians: | $42$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $664$ | $313408$ | $146627800$ | $78291825664$ | $41407496274904$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $28$ | $590$ | $12052$ | $279774$ | $6433388$ | $148029230$ | $3405032036$ | $78310719934$ | $1801148048956$ | $41426524263950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=x^6+16 x^5+6 x^4+12 x^3+21 x^2+19 x+6$
- $y^2=8 x^6+17 x^5+18 x^3+19 x^2+16 x+20$
- $y^2=5 x^6+9 x^5+16 x^4+6 x^2+11 x+6$
- $y^2=13 x^6+8 x^5+11 x^4+16 x^3+19 x^2+9 x+3$
- $y^2=10 x^6+17 x^5+8 x^3+2 x^2+9 x$
- $y^2=20 x^6+21 x^5+4 x^4+8 x^3+9 x^2+8 x+8$
- $y^2=15 x^6+19 x^5+15 x^4+19 x^3+6 x^2+6 x+17$
- $y^2=5 x^6+19 x^5+20 x^3+13 x^2+19 x+19$
- $y^2=7 x^6+x^5+18 x^4+5 x^3+21 x^2+10 x+17$
- $y^2=19 x^6+2 x^5+3 x^4+2 x^3+13 x^2+19 x+13$
- $y^2=11 x^5+9 x^4+17 x^3+2 x^2+16 x+2$
- $y^2=3 x^6+8 x^5+21 x^4+19 x^3+13 x^2+4 x+7$
- $y^2=6 x^6+20 x^5+7 x^4+3 x^3+5 x^2+7 x+5$
- $y^2=8 x^6+15 x^5+11 x^4+7 x^3+3 x^2+x+1$
- $y^2=16 x^6+3 x^5+8 x^4+19 x^3+9 x^2+10 x+13$
- $y^2=x^6+15 x^5+3 x^4+8 x^3+6 x^2+10 x+8$
- $y^2=13 x^6+15 x^5+6 x^4+2 x^2+21 x+19$
- $y^2=16 x^6+6 x^5+9 x^4+4 x^3+22 x^2+13 x+22$
- $y^2=17 x^6+11 x^5+14 x^4+18 x^3+14 x^2+22 x+13$
- $y^2=12 x^6+21 x^5+15 x^4+19 x^3+21 x^2+16 x+18$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 4.0.201024.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ae_bm | $2$ | (not in LMFDB) |