Properties

Label 2.61.ae_da
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 78 x^{2} - 244 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.306334697860$, $\pm0.602170846467$
Angle rank:  $2$ (numerical)
Number field:  4.0.324864.1
Galois group:  $D_{4}$
Jacobians:  $468$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3552$ $14378496$ $51551884512$ $191756453830656$ $713387098916793312$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $58$ $3862$ $227122$ $13849390$ $844648618$ $51519820102$ $3142736883106$ $191707331980894$ $11694146303188762$ $713342911633469302$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 468 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.324864.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.e_da$2$(not in LMFDB)