| L(s) = 1 | + 3-s + 9-s + 8·13-s + 8·19-s − 10·25-s + 27-s + 8·31-s + 4·37-s + 8·39-s − 8·43-s − 7·49-s + 8·57-s + 8·61-s − 8·67-s + 16·73-s − 10·75-s − 8·79-s + 81-s + 8·93-s + 32·97-s − 8·103-s − 4·109-s + 4·111-s + 8·117-s + 6·121-s + 127-s − 8·129-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s + 2.21·13-s + 1.83·19-s − 2·25-s + 0.192·27-s + 1.43·31-s + 0.657·37-s + 1.28·39-s − 1.21·43-s − 49-s + 1.05·57-s + 1.02·61-s − 0.977·67-s + 1.87·73-s − 1.15·75-s − 0.900·79-s + 1/9·81-s + 0.829·93-s + 3.24·97-s − 0.788·103-s − 0.383·109-s + 0.379·111-s + 0.739·117-s + 6/11·121-s + 0.0887·127-s − 0.704·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.708248040\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.708248040\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.699612990621767115674344569469, −8.297626229684288276400460208868, −7.76586040172264729928075886471, −7.68553447959840094948206559560, −6.84391873134415419989679603869, −6.31818947145859030774794430660, −6.05448229794538318092631101572, −5.43394547696395097711202948163, −4.88255857581903955346643529371, −4.17860707846293385075418904931, −3.55463073280261411778157209441, −3.40117956875421770565596686220, −2.55313090941474677416028471295, −1.66413088388390550318048438200, −1.01738005733255902544317238376,
1.01738005733255902544317238376, 1.66413088388390550318048438200, 2.55313090941474677416028471295, 3.40117956875421770565596686220, 3.55463073280261411778157209441, 4.17860707846293385075418904931, 4.88255857581903955346643529371, 5.43394547696395097711202948163, 6.05448229794538318092631101572, 6.31818947145859030774794430660, 6.84391873134415419989679603869, 7.68553447959840094948206559560, 7.76586040172264729928075886471, 8.297626229684288276400460208868, 8.699612990621767115674344569469