Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 78 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.157448017853$, $\pm0.842551982147$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{55})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $228$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4964$ | $24641296$ | $128100988964$ | $645956789862400$ | $3255243550173234404$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4886$ | $357912$ | $25419678$ | $1804229352$ | $128101694006$ | $9095120158392$ | $645753600924478$ | $45848500718449032$ | $3255243549336587606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):
- $y^2=40 x^6+16 x^5+49 x^4+49 x^3+62 x^2+25 x+3$
- $y^2=67 x^6+41 x^5+59 x^4+59 x^3+8 x^2+33 x+21$
- $y^2=63 x^6+67 x^5+3 x^4+9 x^3+45 x^2+51 x+12$
- $y^2=52 x^6+49 x^5+28 x^3+2 x^2+54 x+5$
- $y^2=9 x^6+59 x^5+54 x^3+14 x^2+23 x+35$
- $y^2=29 x^6+58 x^5+33 x^4+36 x^3+70 x^2+57 x+63$
- $y^2=61 x^6+51 x^5+18 x^4+39 x^3+64 x^2+44 x+15$
- $y^2=56 x^6+10 x^5+65 x^4+36 x^3+4 x^2+5 x+52$
- $y^2=17 x^6+61 x^5+31 x^4+51 x^3+40 x^2+16 x+54$
- $y^2=48 x^6+x^5+4 x^4+2 x^3+67 x^2+41 x+23$
- $y^2=15 x^6+27 x^5+8 x^4+24 x^3+68 x^2+53 x+62$
- $y^2=34 x^6+47 x^5+56 x^4+26 x^3+50 x^2+16 x+8$
- $y^2=27 x^6+22 x^5+13 x^4+64 x^3+56 x^2+7 x+25$
- $y^2=47 x^6+12 x^5+20 x^4+22 x^3+37 x^2+49 x+33$
- $y^2=49 x^6+63 x^5+53 x^4+51 x^3+67 x^2+18 x+27$
- $y^2=59 x^6+15 x^5+16 x^4+2 x^3+43 x^2+55 x+47$
- $y^2=5 x^6+64 x^5+61 x^4+9 x^3+50 x+6$
- $y^2=35 x^6+22 x^5+x^4+63 x^3+66 x+42$
- $y^2=56 x^6+15 x^5+14 x^4+32 x^3+2 x^2+26 x+29$
- $y^2=37 x^6+34 x^5+27 x^4+11 x^3+14 x^2+40 x+61$
- and 208 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{55})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.ada 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-55}) \)$)$ |
Base change
This is a primitive isogeny class.