Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 61 x^{2} )( 1 + 2 x + 61 x^{2} )$ |
| $1 - 8 x + 102 x^{2} - 488 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.278857938376$, $\pm0.540867587811$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $428$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3328$ | $14376960$ | $51627666688$ | $191713886208000$ | $713388312751998208$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $3862$ | $227454$ | $13846318$ | $844650054$ | $51520465222$ | $3142736556174$ | $191707277950558$ | $11694146297333334$ | $713342913470986102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 428 curves (of which all are hyperelliptic):
- $y^2=20 x^6+44 x^5+19 x^4+20 x^3+22 x^2+26 x+55$
- $y^2=35 x^6+26 x^5+56 x^4+x^3+x^2+12 x$
- $y^2=30 x^6+58 x^5+46 x^4+9 x^3+51 x^2+57 x+15$
- $y^2=50 x^6+49 x^5+56 x^4+2 x^3+9 x^2+5 x+40$
- $y^2=19 x^6+30 x^5+15 x^4+14 x^3+14 x^2+51 x+55$
- $y^2=46 x^6+47 x^5+25 x^4+15 x^3+49 x^2+12 x+13$
- $y^2=36 x^6+27 x^5+50 x^4+19 x^3+50 x^2+27 x+36$
- $y^2=59 x^6+60 x^5+24 x^3+42 x^2+58 x+43$
- $y^2=5 x^6+13 x^5+34 x^4+30 x^3+6 x^2+44 x+33$
- $y^2=6 x^6+4 x^5+20 x^4+36 x^3+19 x^2+x+11$
- $y^2=35 x^6+31 x^5+30 x^4+12 x^3+59 x^2+13 x+27$
- $y^2=57 x^6+27 x^5+49 x^4+12 x^3+55 x^2+60 x+39$
- $y^2=57 x^6+22 x^5+40 x^4+45 x^3+4 x^2+19 x+31$
- $y^2=27 x^5+43 x^4+40 x^3+27 x^2+11 x+51$
- $y^2=46 x^6+30 x^5+50 x^4+17 x^3+38 x^2+12 x+13$
- $y^2=51 x^6+24 x^5+42 x^4+22 x^3+42 x^2+24 x+51$
- $y^2=54 x^6+49 x^5+47 x^4+56 x^3+25 x^2+56 x+50$
- $y^2=23 x^6+3 x^5+39 x^4+39 x^3+54 x^2+8 x+53$
- $y^2=58 x^6+16 x^5+17 x^4+3 x^3+53 x^2+20 x+3$
- $y^2=24 x^6+44 x^5+52 x^4+14 x^3+3 x^2+44 x+7$
- and 408 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ak $\times$ 1.61.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.