Properties

Label 2.61.ai_dy
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 10 x + 61 x^{2} )( 1 + 2 x + 61 x^{2} )$
  $1 - 8 x + 102 x^{2} - 488 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.278857938376$, $\pm0.540867587811$
Angle rank:  $2$ (numerical)
Jacobians:  $428$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3328$ $14376960$ $51627666688$ $191713886208000$ $713388312751998208$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $54$ $3862$ $227454$ $13846318$ $844650054$ $51520465222$ $3142736556174$ $191707277950558$ $11694146297333334$ $713342913470986102$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 428 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.ak $\times$ 1.61.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.am_fm$2$(not in LMFDB)
2.61.i_dy$2$(not in LMFDB)
2.61.m_fm$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.am_fm$2$(not in LMFDB)
2.61.i_dy$2$(not in LMFDB)
2.61.m_fm$2$(not in LMFDB)
2.61.ao_fq$4$(not in LMFDB)
2.61.ak_du$4$(not in LMFDB)
2.61.k_du$4$(not in LMFDB)
2.61.o_fq$4$(not in LMFDB)