Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 73 x^{2} )( 1 - 6 x + 73 x^{2} )$ |
| $1 - 16 x + 206 x^{2} - 1168 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.301013746420$, $\pm0.385799748780$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $134$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4352$ | $29245440$ | $152226384128$ | $806661763891200$ | $4297438726828681472$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $5486$ | $391306$ | $28405342$ | $2072981338$ | $151333160654$ | $11047396161706$ | $806460130441918$ | $58871587046967418$ | $4297625830107235886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 134 curves (of which all are hyperelliptic):
- $y^2=58 x^6+63 x^5+8 x^4+9 x^3+71 x^2+16 x+27$
- $y^2=30 x^6+30 x^5+6 x^4+15 x^3+9 x^2+31 x+10$
- $y^2=23 x^6+47 x^4+59 x^3+47 x^2+23$
- $y^2=5 x^6+21 x^5+62 x^4+24 x^3+62 x^2+21 x+5$
- $y^2=19 x^6+11 x^5+48 x^4+59 x^3+48 x^2+11 x+19$
- $y^2=11 x^6+67 x^5+44 x^4+49 x^3+71 x^2+43 x+40$
- $y^2=14 x^6+7 x^5+61 x^4+38 x^3+61 x^2+7 x+14$
- $y^2=67 x^6+54 x^5+19 x^4+72 x^3+19 x^2+54 x+67$
- $y^2=63 x^6+67 x^5+30 x^4+31 x^3+44 x^2+27 x+66$
- $y^2=65 x^6+22 x^5+28 x^4+20 x^3+39 x^2+60 x+72$
- $y^2=30 x^6+8 x^5+27 x^4+39 x^3+27 x^2+8 x+30$
- $y^2=51 x^6+25 x^5+40 x^4+27 x^3+15 x^2+48 x+63$
- $y^2=x^6+17 x^5+51 x^4+61 x^3+51 x^2+17 x+1$
- $y^2=29 x^6+10 x^5+18 x^4+48 x^3+18 x^2+10 x+29$
- $y^2=72 x^6+67 x^5+53 x^4+47 x^3+51 x^2+38 x+24$
- $y^2=5 x^6+18 x^5+47 x^4+15 x^3+21 x^2+72 x+40$
- $y^2=44 x^6+4 x^5+x^4+17 x^3+x^2+4 x+44$
- $y^2=25 x^6+28 x^5+38 x^4+55 x^3+38 x^2+28 x+25$
- $y^2=43 x^6+4 x^5+63 x^4+12 x^3+45 x^2+8 x+51$
- $y^2=28 x^6+45 x^5+51 x^4+9 x^3+45 x^2+56 x+15$
- and 114 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ak $\times$ 1.73.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.