| L(s) = 1 | − 3-s + 9-s + 8·13-s − 8·19-s − 10·25-s − 27-s − 8·31-s + 4·37-s − 8·39-s + 8·43-s − 7·49-s + 8·57-s + 8·61-s + 8·67-s + 16·73-s + 10·75-s + 8·79-s + 81-s + 8·93-s + 32·97-s + 8·103-s − 4·109-s − 4·111-s + 8·117-s + 6·121-s + 127-s − 8·129-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1/3·9-s + 2.21·13-s − 1.83·19-s − 2·25-s − 0.192·27-s − 1.43·31-s + 0.657·37-s − 1.28·39-s + 1.21·43-s − 49-s + 1.05·57-s + 1.02·61-s + 0.977·67-s + 1.87·73-s + 1.15·75-s + 0.900·79-s + 1/9·81-s + 0.829·93-s + 3.24·97-s + 0.788·103-s − 0.383·109-s − 0.379·111-s + 0.739·117-s + 6/11·121-s + 0.0887·127-s − 0.704·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.354124020\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.354124020\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.707760690069215767720859748121, −8.204992376871640484852414545705, −8.002494181131914373468134125365, −7.34308255208970001455830028366, −6.74739508712700621806548351801, −6.23253373626887200936267143311, −6.01293015988810979454748791954, −5.61895539956247493692671988248, −4.87445902304938786609142494389, −4.23984085275501578963487120772, −3.73709291953889828688513907847, −3.51225399043481939391174543154, −2.20705716352194040660361507275, −1.82857360253644785251609585705, −0.69481716169274455901640598646,
0.69481716169274455901640598646, 1.82857360253644785251609585705, 2.20705716352194040660361507275, 3.51225399043481939391174543154, 3.73709291953889828688513907847, 4.23984085275501578963487120772, 4.87445902304938786609142494389, 5.61895539956247493692671988248, 6.01293015988810979454748791954, 6.23253373626887200936267143311, 6.74739508712700621806548351801, 7.34308255208970001455830028366, 8.002494181131914373468134125365, 8.204992376871640484852414545705, 8.707760690069215767720859748121