L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 12-s − 8·13-s + 16-s − 18-s + 12·23-s + 24-s − 10·25-s + 8·26-s − 27-s − 32-s + 36-s − 8·37-s + 8·39-s − 12·46-s − 12·47-s − 48-s + 2·49-s + 10·50-s − 8·52-s + 54-s + 24·59-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 2.21·13-s + 1/4·16-s − 0.235·18-s + 2.50·23-s + 0.204·24-s − 2·25-s + 1.56·26-s − 0.192·27-s − 0.176·32-s + 1/6·36-s − 1.31·37-s + 1.28·39-s − 1.76·46-s − 1.75·47-s − 0.144·48-s + 2/7·49-s + 1.41·50-s − 1.10·52-s + 0.136·54-s + 3.12·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.381778434403041270610948676969, −8.211124874872632719716882271254, −7.63111837112808582138120144993, −7.06756557503064388001592546481, −6.75095657741783063390476290272, −6.59547283064248335138694127148, −5.38776924769841264609355327167, −5.21083603966480863402338802043, −5.07485672472001477729499979724, −3.94709989510610133111766841641, −3.58677867797817326821260752741, −2.40790679424770113535591807077, −2.34092707995523044468378525917, −1.09773072794770812951577890272, 0,
1.09773072794770812951577890272, 2.34092707995523044468378525917, 2.40790679424770113535591807077, 3.58677867797817326821260752741, 3.94709989510610133111766841641, 5.07485672472001477729499979724, 5.21083603966480863402338802043, 5.38776924769841264609355327167, 6.59547283064248335138694127148, 6.75095657741783063390476290272, 7.06756557503064388001592546481, 7.63111837112808582138120144993, 8.211124874872632719716882271254, 8.381778434403041270610948676969