Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 73 x^{2} )^{2}$ |
| $1 - 28 x + 342 x^{2} - 2044 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.194368965322$, $\pm0.194368965322$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $29$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3600$ | $27878400$ | $151585635600$ | $806923560960000$ | $4298001922141290000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $46$ | $5230$ | $389662$ | $28414558$ | $2073253006$ | $151335574990$ | $11047404157822$ | $806460072381118$ | $58871586023459566$ | $4297625821540687150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 29 curves (of which all are hyperelliptic):
- $y^2=42 x^6+41 x^5+26 x^4+12 x^3+5 x^2+4 x+39$
- $y^2=9 x^6+7 x^5+39 x^4+28 x^3+26 x^2+68 x+27$
- $y^2=28 x^6+46 x^4+46 x^2+28$
- $y^2=52 x^6+x^5+64 x^4+23 x^3+36 x^2+29 x+34$
- $y^2=22 x^6+37 x^5+58 x^4+47 x^3+29 x^2+64 x+21$
- $y^2=34 x^6+57 x^4+57 x^2+34$
- $y^2=15 x^6+53 x^5+22 x^4+51 x^3+68 x^2+5 x+5$
- $y^2=43 x^6+12 x^4+12 x^2+43$
- $y^2=56 x^6+15 x^5+64 x^4+21 x^3+69 x^2+30 x+66$
- $y^2=7 x^6+32 x^5+69 x^4+69 x^3+42 x^2+41 x+32$
- $y^2=59 x^6+59 x^5+63 x^4+68 x^3+31 x^2+22 x+13$
- $y^2=39 x^6+70 x^5+31 x^4+57 x^3+58 x^2+35 x+20$
- $y^2=56 x^6+20 x^4+20 x^2+56$
- $y^2=x^6+x^3+27$
- $y^2=50 x^6+50 x^4+50 x^2+50$
- $y^2=2 x^6+16 x^5+14 x^4+35 x^3+14 x^2+16 x+2$
- $y^2=43 x^6+13 x^5+53 x^4+24 x^3+33 x^2+52 x+52$
- $y^2=43 x^6+51 x^5+45 x^4+36 x^3+15 x^2+30 x+7$
- $y^2=31 x^6+7 x^5+24 x^4+30 x^3+24 x^2+7 x+31$
- $y^2=10 x^6+51 x^5+62 x^4+24 x^3+62 x^2+51 x+10$
- $y^2=x^6+25 x^3+3$
- $y^2=9 x^6+66 x^5+7 x^4+8 x^3+58 x^2+41 x+10$
- $y^2=15 x^6+26 x^5+x^4+8 x^3+x^2+26 x+15$
- $y^2=26 x^6+42 x^5+55 x^4+58 x^3+3 x^2+62 x+33$
- $y^2=x^6+37 x^3+64$
- $y^2=20 x^6+60 x^5+4 x^4+44 x^3+55 x^2+47 x+39$
- $y^2=32 x^6+44 x^5+50 x^4+35 x^3+50 x^2+44 x+32$
- $y^2=53 x^6+67 x^5+69 x^4+14 x^3+18 x^2+61 x+34$
- $y^2=58 x^6+48 x^5+49 x^4+28 x^3+49 x^2+48 x+58$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.