| L(s) = 1 | − 3·5-s + 4·7-s − 3·11-s − 9·13-s + 8·19-s − 9·23-s + 25-s − 9·29-s + 7·31-s − 12·35-s + 20·37-s + 9·41-s + 15·43-s + 3·47-s + 9·49-s + 12·53-s + 9·55-s − 3·59-s + 3·61-s + 27·65-s − 15·67-s − 12·77-s − 9·79-s − 9·83-s − 36·91-s − 24·95-s − 9·97-s + ⋯ |
| L(s) = 1 | − 1.34·5-s + 1.51·7-s − 0.904·11-s − 2.49·13-s + 1.83·19-s − 1.87·23-s + 1/5·25-s − 1.67·29-s + 1.25·31-s − 2.02·35-s + 3.28·37-s + 1.40·41-s + 2.28·43-s + 0.437·47-s + 9/7·49-s + 1.64·53-s + 1.21·55-s − 0.390·59-s + 0.384·61-s + 3.34·65-s − 1.83·67-s − 1.36·77-s − 1.01·79-s − 0.987·83-s − 3.77·91-s − 2.46·95-s − 0.913·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.599114411\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.599114411\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.888768265293725083732454664789, −8.302729191105383647612976557044, −7.85497919882213340020942777364, −7.72796943325998890394483650937, −7.54357897384892909229362326162, −7.44335153854105164270703181236, −6.98567178857265511763919565286, −5.96916462689394014751658903153, −5.71614347182852355385653880975, −5.62374277322261289421656629045, −4.92882649822345887598498337339, −4.46794179651570461098117287457, −4.22071927690533667054716967124, −4.20166356256392410374852281644, −3.23536125241352348966895283713, −2.73579161567964325173198713219, −2.35161924972261865074890545498, −2.02042231894388616368019642682, −0.974872453086151160672866459934, −0.47796757664472220941816864649,
0.47796757664472220941816864649, 0.974872453086151160672866459934, 2.02042231894388616368019642682, 2.35161924972261865074890545498, 2.73579161567964325173198713219, 3.23536125241352348966895283713, 4.20166356256392410374852281644, 4.22071927690533667054716967124, 4.46794179651570461098117287457, 4.92882649822345887598498337339, 5.62374277322261289421656629045, 5.71614347182852355385653880975, 5.96916462689394014751658903153, 6.98567178857265511763919565286, 7.44335153854105164270703181236, 7.54357897384892909229362326162, 7.72796943325998890394483650937, 7.85497919882213340020942777364, 8.302729191105383647612976557044, 8.888768265293725083732454664789