Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 130 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.0659004698611$, $\pm0.934099530139$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{17})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $42$ |
| Isomorphism classes: | 190 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4912$ | $24127744$ | $128100052912$ | $645407114858496$ | $3255243552738373552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $4782$ | $357912$ | $25398046$ | $1804229352$ | $128099821902$ | $9095120158392$ | $645753539922238$ | $45848500718449032$ | $3255243554466865902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=18 x^6+16 x^5+7 x^4+63 x^3+39 x^2+45 x+25$
- $y^2=51 x^6+68 x^5+30 x^4+26 x^3+41 x^2+32 x+64$
- $y^2=24 x^6+19 x^5+38 x^4+20 x^3+66 x^2+5 x+21$
- $y^2=31 x^6+49 x^5+67 x^4+36 x^3+10 x^2+40 x+57$
- $y^2=22 x^6+39 x^5+3 x^4+18 x^3+39 x^2+33 x+23$
- $y^2=36 x^6+68 x^5+40 x^4+16 x^3+26 x^2+40 x+36$
- $y^2=49 x^6+62 x^5+30 x^4+65 x^3+48 x^2+52 x+5$
- $y^2=44 x^6+54 x^5+18 x^3+54 x+27$
- $y^2=30 x^6+46 x^5+45 x^4+59 x^3+56 x^2+13 x+62$
- $y^2=13 x^6+52 x^5+20 x^4+21 x^3+18 x^2+8$
- $y^2=6 x^6+19 x^5+40 x^4+22 x^3+7 x^2+60 x+22$
- $y^2=63 x^6+25 x^5+68 x^4+36 x^3+69 x^2+48 x+65$
- $y^2=45 x^6+46 x^5+51 x^4+13 x^3+32 x^2+7 x+23$
- $y^2=24 x^6+51 x^5+61 x^4+13 x^3+60 x^2+61 x+70$
- $y^2=30 x^6+35 x^5+29 x^4+43 x^3+46 x^2+51 x+55$
- $y^2=11 x^6+68 x^5+16 x^4+33 x^3+31 x^2+70 x+50$
- $y^2=20 x^6+19 x^5+x^4+44 x^3+15 x^2+58 x+56$
- $y^2=5 x^6+61 x^5+48 x^4+69 x^3+60 x^2+33 x+10$
- $y^2=49 x^6+37 x^5+47 x^4+59 x^3+40 x^2+16 x+44$
- $y^2=58 x^6+3 x^5+56 x^4+11 x^3+20 x^2+29 x+65$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{17})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.afa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-51}) \)$)$ |
Base change
This is a primitive isogeny class.