Properties

Label 3024.2.cx.c.2575.1
Level $3024$
Weight $2$
Character 3024.2575
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(559,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,4,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2575.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2575
Dual form 3024.2.cx.c.559.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{5} +(2.00000 + 1.73205i) q^{7} +(-1.50000 + 0.866025i) q^{11} +(-4.50000 - 2.59808i) q^{13} +6.92820i q^{17} +4.00000 q^{19} +(-4.50000 - 2.59808i) q^{23} +(-1.00000 - 1.73205i) q^{25} +(-4.50000 - 7.79423i) q^{29} +(3.50000 - 6.06218i) q^{31} +(-1.50000 - 4.33013i) q^{35} +10.0000 q^{37} +(4.50000 + 2.59808i) q^{41} +(7.50000 - 4.33013i) q^{43} +(1.50000 + 2.59808i) q^{47} +(1.00000 + 6.92820i) q^{49} +6.00000 q^{53} +3.00000 q^{55} +(-1.50000 + 2.59808i) q^{59} +(1.50000 - 0.866025i) q^{61} +(4.50000 + 7.79423i) q^{65} +(-7.50000 - 4.33013i) q^{67} -3.46410i q^{71} -6.92820i q^{73} +(-4.50000 - 0.866025i) q^{77} +(-4.50000 + 2.59808i) q^{79} +(-4.50000 - 7.79423i) q^{83} +(6.00000 - 10.3923i) q^{85} +6.92820i q^{89} +(-4.50000 - 12.9904i) q^{91} +(-6.00000 - 3.46410i) q^{95} +(-4.50000 + 2.59808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 4 q^{7} - 3 q^{11} - 9 q^{13} + 8 q^{19} - 9 q^{23} - 2 q^{25} - 9 q^{29} + 7 q^{31} - 3 q^{35} + 20 q^{37} + 9 q^{41} + 15 q^{43} + 3 q^{47} + 2 q^{49} + 12 q^{53} + 6 q^{55} - 3 q^{59}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 0.866025i −0.670820 0.387298i 0.125567 0.992085i \(-0.459925\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 0.866025i −0.452267 + 0.261116i −0.708787 0.705422i \(-0.750757\pi\)
0.256520 + 0.966539i \(0.417424\pi\)
\(12\) 0 0
\(13\) −4.50000 2.59808i −1.24808 0.720577i −0.277350 0.960769i \(-0.589456\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.92820i 1.68034i 0.542326 + 0.840168i \(0.317544\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.50000 2.59808i −0.938315 0.541736i −0.0488832 0.998805i \(-0.515566\pi\)
−0.889432 + 0.457068i \(0.848900\pi\)
\(24\) 0 0
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 3.50000 6.06218i 0.628619 1.08880i −0.359211 0.933257i \(-0.616954\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 4.33013i −0.253546 0.731925i
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 2.59808i 0.702782 + 0.405751i 0.808383 0.588657i \(-0.200343\pi\)
−0.105601 + 0.994409i \(0.533677\pi\)
\(42\) 0 0
\(43\) 7.50000 4.33013i 1.14374 0.660338i 0.196385 0.980527i \(-0.437080\pi\)
0.947354 + 0.320189i \(0.103746\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) 1.50000 0.866025i 0.192055 0.110883i −0.400889 0.916127i \(-0.631299\pi\)
0.592944 + 0.805243i \(0.297965\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.50000 + 7.79423i 0.558156 + 0.966755i
\(66\) 0 0
\(67\) −7.50000 4.33013i −0.916271 0.529009i −0.0338274 0.999428i \(-0.510770\pi\)
−0.882443 + 0.470418i \(0.844103\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410i 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.50000 0.866025i −0.512823 0.0986928i
\(78\) 0 0
\(79\) −4.50000 + 2.59808i −0.506290 + 0.292306i −0.731307 0.682048i \(-0.761089\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.50000 7.79423i −0.493939 0.855528i 0.506036 0.862512i \(-0.331110\pi\)
−0.999976 + 0.00698436i \(0.997777\pi\)
\(84\) 0 0
\(85\) 6.00000 10.3923i 0.650791 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.92820i 0.734388i 0.930144 + 0.367194i \(0.119682\pi\)
−0.930144 + 0.367194i \(0.880318\pi\)
\(90\) 0 0
\(91\) −4.50000 12.9904i −0.471728 1.36176i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 3.46410i −0.615587 0.355409i
\(96\) 0 0
\(97\) −4.50000 + 2.59808i −0.456906 + 0.263795i −0.710742 0.703452i \(-0.751641\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.5000 9.52628i 1.64181 0.947900i 0.661622 0.749838i \(-0.269868\pi\)
0.980189 0.198063i \(-0.0634650\pi\)
\(102\) 0 0
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.3205i 1.67444i −0.546869 0.837218i \(-0.684180\pi\)
0.546869 0.837218i \(-0.315820\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.50000 12.9904i 0.705541 1.22203i −0.260955 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(114\) 0 0
\(115\) 4.50000 + 7.79423i 0.419627 + 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 + 13.8564i −1.10004 + 1.27021i
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 17.3205i 1.53695i −0.639882 0.768473i \(-0.721017\pi\)
0.639882 0.768473i \(-0.278983\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.5000 18.1865i 0.917389 1.58896i 0.114024 0.993478i \(-0.463626\pi\)
0.803365 0.595487i \(-0.203041\pi\)
\(132\) 0 0
\(133\) 8.00000 + 6.92820i 0.693688 + 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i \(-0.125762\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.00000 0.752618
\(144\) 0 0
\(145\) 15.5885i 1.29455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) 19.5000 11.2583i 1.58689 0.916190i 0.593072 0.805150i \(-0.297915\pi\)
0.993816 0.111040i \(-0.0354182\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5000 + 6.06218i −0.843380 + 0.486926i
\(156\) 0 0
\(157\) 1.50000 + 0.866025i 0.119713 + 0.0691164i 0.558661 0.829396i \(-0.311315\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.50000 12.9904i −0.354650 1.02379i
\(162\) 0 0
\(163\) 3.46410i 0.271329i 0.990755 + 0.135665i \(0.0433170\pi\)
−0.990755 + 0.135665i \(0.956683\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 0 0
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.50000 2.59808i 0.342129 0.197528i −0.319084 0.947726i \(-0.603375\pi\)
0.661213 + 0.750198i \(0.270042\pi\)
\(174\) 0 0
\(175\) 1.00000 5.19615i 0.0755929 0.392792i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.46410i 0.258919i −0.991585 0.129460i \(-0.958676\pi\)
0.991585 0.129460i \(-0.0413242\pi\)
\(180\) 0 0
\(181\) 13.8564i 1.02994i 0.857209 + 0.514969i \(0.172197\pi\)
−0.857209 + 0.514969i \(0.827803\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.0000 8.66025i −1.10282 0.636715i
\(186\) 0 0
\(187\) −6.00000 10.3923i −0.438763 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.5000 6.06218i 0.759753 0.438644i −0.0694538 0.997585i \(-0.522126\pi\)
0.829207 + 0.558941i \(0.188792\pi\)
\(192\) 0 0
\(193\) 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i \(-0.775738\pi\)
0.941865 + 0.335993i \(0.109072\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.50000 23.3827i 0.315838 1.64114i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 + 3.46410i −0.415029 + 0.239617i
\(210\) 0 0
\(211\) 4.50000 + 2.59808i 0.309793 + 0.178859i 0.646834 0.762631i \(-0.276093\pi\)
−0.337041 + 0.941490i \(0.609426\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.0000 −1.02299
\(216\) 0 0
\(217\) 17.5000 6.06218i 1.18798 0.411527i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000 31.1769i 1.21081 2.09719i
\(222\) 0 0
\(223\) −9.50000 16.4545i −0.636167 1.10187i −0.986267 0.165161i \(-0.947186\pi\)
0.350100 0.936713i \(-0.386148\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 0 0
\(229\) 1.50000 + 0.866025i 0.0991228 + 0.0572286i 0.548742 0.835992i \(-0.315107\pi\)
−0.449619 + 0.893220i \(0.648440\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 5.19615i 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.5000 9.52628i −1.06730 0.616204i −0.139855 0.990172i \(-0.544664\pi\)
−0.927442 + 0.373968i \(0.877997\pi\)
\(240\) 0 0
\(241\) 1.50000 0.866025i 0.0966235 0.0557856i −0.450910 0.892570i \(-0.648900\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.50000 11.2583i 0.287494 0.719268i
\(246\) 0 0
\(247\) −18.0000 10.3923i −1.14531 0.661247i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5000 7.79423i −0.842107 0.486191i 0.0158730 0.999874i \(-0.494947\pi\)
−0.857980 + 0.513683i \(0.828281\pi\)
\(258\) 0 0
\(259\) 20.0000 + 17.3205i 1.24274 + 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.5000 9.52628i 1.01743 0.587416i 0.104074 0.994570i \(-0.466812\pi\)
0.913360 + 0.407154i \(0.133479\pi\)
\(264\) 0 0
\(265\) −9.00000 5.19615i −0.552866 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.00000 + 1.73205i 0.180907 + 0.104447i
\(276\) 0 0
\(277\) −9.50000 16.4545i −0.570800 0.988654i −0.996484 0.0837823i \(-0.973300\pi\)
0.425684 0.904872i \(-0.360033\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.5000 + 23.3827i 0.805342 + 1.39489i 0.916060 + 0.401042i \(0.131352\pi\)
−0.110717 + 0.993852i \(0.535315\pi\)
\(282\) 0 0
\(283\) −6.50000 + 11.2583i −0.386385 + 0.669238i −0.991960 0.126550i \(-0.959610\pi\)
0.605575 + 0.795788i \(0.292943\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.50000 + 12.9904i 0.265627 + 0.766798i
\(288\) 0 0
\(289\) −31.0000 −1.82353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.5000 7.79423i −0.788678 0.455344i 0.0508187 0.998708i \(-0.483817\pi\)
−0.839497 + 0.543364i \(0.817150\pi\)
\(294\) 0 0
\(295\) 4.50000 2.59808i 0.262000 0.151266i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.5000 + 23.3827i 0.780725 + 1.35226i
\(300\) 0 0
\(301\) 22.5000 + 4.33013i 1.29688 + 0.249584i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.50000 7.79423i 0.255172 0.441970i −0.709771 0.704433i \(-0.751201\pi\)
0.964942 + 0.262463i \(0.0845347\pi\)
\(312\) 0 0
\(313\) 1.50000 0.866025i 0.0847850 0.0489506i −0.457008 0.889463i \(-0.651079\pi\)
0.541793 + 0.840512i \(0.317746\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.50000 7.79423i −0.252745 0.437767i 0.711535 0.702650i \(-0.248000\pi\)
−0.964281 + 0.264883i \(0.914667\pi\)
\(318\) 0 0
\(319\) 13.5000 + 7.79423i 0.755855 + 0.436393i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 27.7128i 1.54198i
\(324\) 0 0
\(325\) 10.3923i 0.576461i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.50000 + 7.79423i −0.0826977 + 0.429710i
\(330\) 0 0
\(331\) −22.5000 + 12.9904i −1.23671 + 0.714016i −0.968421 0.249322i \(-0.919792\pi\)
−0.268291 + 0.963338i \(0.586459\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.50000 + 12.9904i 0.409769 + 0.709740i
\(336\) 0 0
\(337\) −11.5000 + 19.9186i −0.626445 + 1.08503i 0.361815 + 0.932250i \(0.382157\pi\)
−0.988260 + 0.152784i \(0.951176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.1244i 0.656571i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.50000 + 4.33013i 0.402621 + 0.232453i 0.687614 0.726076i \(-0.258658\pi\)
−0.284993 + 0.958530i \(0.591991\pi\)
\(348\) 0 0
\(349\) −28.5000 + 16.4545i −1.52557 + 0.880788i −0.526030 + 0.850466i \(0.676320\pi\)
−0.999540 + 0.0303222i \(0.990347\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.5000 9.52628i 0.878206 0.507033i 0.00813978 0.999967i \(-0.497409\pi\)
0.870067 + 0.492934i \(0.164076\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.2487i 1.27980i −0.768459 0.639899i \(-0.778976\pi\)
0.768459 0.639899i \(-0.221024\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 + 10.3923i −0.314054 + 0.543958i
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 + 10.3923i 0.623009 + 0.539542i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 46.7654i 2.40854i
\(378\) 0 0
\(379\) 17.3205i 0.889695i −0.895606 0.444847i \(-0.853258\pi\)
0.895606 0.444847i \(-0.146742\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.50000 + 2.59808i −0.0766464 + 0.132755i −0.901801 0.432151i \(-0.857755\pi\)
0.825155 + 0.564907i \(0.191088\pi\)
\(384\) 0 0
\(385\) 6.00000 + 5.19615i 0.305788 + 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) 0 0
\(391\) 18.0000 31.1769i 0.910299 1.57668i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.00000 0.452839
\(396\) 0 0
\(397\) 13.8564i 0.695433i −0.937600 0.347717i \(-0.886957\pi\)
0.937600 0.347717i \(-0.113043\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.5000 + 18.1865i −0.524345 + 0.908192i 0.475253 + 0.879849i \(0.342356\pi\)
−0.999598 + 0.0283431i \(0.990977\pi\)
\(402\) 0 0
\(403\) −31.5000 + 18.1865i −1.56913 + 0.905936i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.0000 + 8.66025i −0.743522 + 0.429273i
\(408\) 0 0
\(409\) 25.5000 + 14.7224i 1.26089 + 0.727977i 0.973247 0.229759i \(-0.0737939\pi\)
0.287646 + 0.957737i \(0.407127\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.50000 + 2.59808i −0.369051 + 0.127843i
\(414\) 0 0
\(415\) 15.5885i 0.765207i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.50000 7.79423i 0.219839 0.380773i −0.734919 0.678155i \(-0.762780\pi\)
0.954759 + 0.297382i \(0.0961133\pi\)
\(420\) 0 0
\(421\) 8.50000 + 14.7224i 0.414265 + 0.717527i 0.995351 0.0963145i \(-0.0307055\pi\)
−0.581086 + 0.813842i \(0.697372\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 6.92820i 0.582086 0.336067i
\(426\) 0 0
\(427\) 4.50000 + 0.866025i 0.217770 + 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.46410i 0.166860i 0.996514 + 0.0834300i \(0.0265875\pi\)
−0.996514 + 0.0834300i \(0.973413\pi\)
\(432\) 0 0
\(433\) 6.92820i 0.332948i −0.986046 0.166474i \(-0.946762\pi\)
0.986046 0.166474i \(-0.0532382\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.0000 10.3923i −0.861057 0.497131i
\(438\) 0 0
\(439\) −3.50000 6.06218i −0.167046 0.289332i 0.770334 0.637641i \(-0.220089\pi\)
−0.937380 + 0.348309i \(0.886756\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.50000 + 4.33013i −0.356336 + 0.205731i −0.667472 0.744635i \(-0.732624\pi\)
0.311136 + 0.950365i \(0.399290\pi\)
\(444\) 0 0
\(445\) 6.00000 10.3923i 0.284427 0.492642i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.50000 + 23.3827i −0.210963 + 1.09620i
\(456\) 0 0
\(457\) 6.50000 + 11.2583i 0.304057 + 0.526642i 0.977051 0.213006i \(-0.0683253\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5000 6.06218i 0.489034 0.282344i −0.235140 0.971962i \(-0.575555\pi\)
0.724174 + 0.689618i \(0.242221\pi\)
\(462\) 0 0
\(463\) 4.50000 + 2.59808i 0.209133 + 0.120743i 0.600908 0.799318i \(-0.294806\pi\)
−0.391776 + 0.920061i \(0.628139\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) −7.50000 21.6506i −0.346318 0.999733i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.50000 + 12.9904i −0.344850 + 0.597298i
\(474\) 0 0
\(475\) −4.00000 6.92820i −0.183533 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.50000 7.79423i −0.205610 0.356127i 0.744717 0.667381i \(-0.232585\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(480\) 0 0
\(481\) −45.0000 25.9808i −2.05182 1.18462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.00000 0.408669
\(486\) 0 0
\(487\) 10.3923i 0.470920i 0.971884 + 0.235460i \(0.0756597\pi\)
−0.971884 + 0.235460i \(0.924340\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.5000 + 7.79423i 0.609246 + 0.351749i 0.772670 0.634807i \(-0.218921\pi\)
−0.163424 + 0.986556i \(0.552254\pi\)
\(492\) 0 0
\(493\) 54.0000 31.1769i 2.43204 1.40414i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00000 6.92820i 0.269137 0.310772i
\(498\) 0 0
\(499\) 22.5000 + 12.9904i 1.00724 + 0.581529i 0.910382 0.413769i \(-0.135788\pi\)
0.0968564 + 0.995298i \(0.469121\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) −33.0000 −1.46848
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.5000 + 9.52628i 0.731350 + 0.422245i 0.818916 0.573914i \(-0.194576\pi\)
−0.0875661 + 0.996159i \(0.527909\pi\)
\(510\) 0 0
\(511\) 12.0000 13.8564i 0.530849 0.612971i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.50000 4.33013i 0.330489 0.190808i
\(516\) 0 0
\(517\) −4.50000 2.59808i −0.197910 0.114263i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.7128i 1.21412i −0.794656 0.607060i \(-0.792349\pi\)
0.794656 0.607060i \(-0.207651\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 42.0000 + 24.2487i 1.82955 + 1.05629i
\(528\) 0 0
\(529\) 2.00000 + 3.46410i 0.0869565 + 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13.5000 23.3827i −0.584750 1.01282i
\(534\) 0 0
\(535\) −15.0000 + 25.9808i −0.648507 + 1.12325i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.50000 9.52628i −0.323048 0.410326i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.00000 1.73205i −0.128506 0.0741929i
\(546\) 0 0
\(547\) 1.50000 0.866025i 0.0641354 0.0370286i −0.467589 0.883946i \(-0.654877\pi\)
0.531725 + 0.846917i \(0.321544\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.0000 31.1769i −0.766826 1.32818i
\(552\) 0 0
\(553\) −13.5000 2.59808i −0.574078 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −42.0000 −1.77960 −0.889799 0.456354i \(-0.849155\pi\)
−0.889799 + 0.456354i \(0.849155\pi\)
\(558\) 0 0
\(559\) −45.0000 −1.90330
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.50000 7.79423i 0.189652 0.328488i −0.755482 0.655169i \(-0.772597\pi\)
0.945134 + 0.326682i \(0.105931\pi\)
\(564\) 0 0
\(565\) −22.5000 + 12.9904i −0.946582 + 0.546509i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.5000 + 33.7750i 0.817483 + 1.41592i 0.907532 + 0.419984i \(0.137964\pi\)
−0.0900490 + 0.995937i \(0.528702\pi\)
\(570\) 0 0
\(571\) 16.5000 + 9.52628i 0.690504 + 0.398662i 0.803801 0.594899i \(-0.202808\pi\)
−0.113297 + 0.993561i \(0.536141\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.3923i 0.433389i
\(576\) 0 0
\(577\) 34.6410i 1.44212i −0.692870 0.721062i \(-0.743654\pi\)
0.692870 0.721062i \(-0.256346\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.50000 23.3827i 0.186691 0.970077i
\(582\) 0 0
\(583\) −9.00000 + 5.19615i −0.372742 + 0.215203i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.50000 7.79423i −0.185735 0.321702i 0.758089 0.652151i \(-0.226133\pi\)
−0.943824 + 0.330449i \(0.892800\pi\)
\(588\) 0 0
\(589\) 14.0000 24.2487i 0.576860 0.999151i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.6410i 1.42254i 0.702921 + 0.711268i \(0.251879\pi\)
−0.702921 + 0.711268i \(0.748121\pi\)
\(594\) 0 0
\(595\) 30.0000 10.3923i 1.22988 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.50000 + 0.866025i 0.0612883 + 0.0353848i 0.530331 0.847791i \(-0.322068\pi\)
−0.469043 + 0.883175i \(0.655401\pi\)
\(600\) 0 0
\(601\) −28.5000 + 16.4545i −1.16254 + 0.671192i −0.951911 0.306374i \(-0.900884\pi\)
−0.210628 + 0.977566i \(0.567551\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.0000 6.92820i 0.487869 0.281672i
\(606\) 0 0
\(607\) −6.50000 + 11.2583i −0.263827 + 0.456962i −0.967256 0.253804i \(-0.918318\pi\)
0.703429 + 0.710766i \(0.251651\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.5885i 0.630641i
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50000 2.59808i 0.0603877 0.104595i −0.834251 0.551385i \(-0.814100\pi\)
0.894639 + 0.446790i \(0.147433\pi\)
\(618\) 0 0
\(619\) −17.5000 30.3109i −0.703384 1.21830i −0.967271 0.253744i \(-0.918338\pi\)
0.263887 0.964554i \(-0.414995\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 + 13.8564i −0.480770 + 0.555145i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 69.2820i 2.76246i
\(630\) 0 0
\(631\) 38.1051i 1.51694i 0.651707 + 0.758470i \(0.274053\pi\)
−0.651707 + 0.758470i \(0.725947\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.0000 + 25.9808i −0.595257 + 1.03102i
\(636\) 0 0
\(637\) 13.5000 33.7750i 0.534889 1.33821i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.5000 + 33.7750i 0.770204 + 1.33403i 0.937451 + 0.348117i \(0.113179\pi\)
−0.167247 + 0.985915i \(0.553488\pi\)
\(642\) 0 0
\(643\) 11.5000 19.9186i 0.453516 0.785512i −0.545086 0.838380i \(-0.683503\pi\)
0.998602 + 0.0528680i \(0.0168363\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 5.19615i 0.203967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.50000 + 7.79423i −0.176099 + 0.305012i −0.940541 0.339680i \(-0.889681\pi\)
0.764442 + 0.644692i \(0.223014\pi\)
\(654\) 0 0
\(655\) −31.5000 + 18.1865i −1.23081 + 0.710607i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.5000 12.9904i 0.876476 0.506033i 0.00698084 0.999976i \(-0.497778\pi\)
0.869495 + 0.493942i \(0.164445\pi\)
\(660\) 0 0
\(661\) 1.50000 + 0.866025i 0.0583432 + 0.0336845i 0.528888 0.848692i \(-0.322609\pi\)
−0.470545 + 0.882376i \(0.655943\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.00000 17.3205i −0.232670 0.671660i
\(666\) 0 0
\(667\) 46.7654i 1.81076i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.50000 + 2.59808i −0.0579069 + 0.100298i
\(672\) 0 0
\(673\) −21.5000 37.2391i −0.828764 1.43546i −0.899008 0.437932i \(-0.855711\pi\)
0.0702442 0.997530i \(-0.477622\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.5000 + 11.2583i −0.749446 + 0.432693i −0.825494 0.564411i \(-0.809103\pi\)
0.0760478 + 0.997104i \(0.475770\pi\)
\(678\) 0 0
\(679\) −13.5000 2.59808i −0.518082 0.0997050i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 51.9615i 1.98825i 0.108227 + 0.994126i \(0.465483\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(684\) 0 0
\(685\) 5.19615i 0.198535i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −27.0000 15.5885i −1.02862 0.593873i
\(690\) 0 0
\(691\) −11.5000 19.9186i −0.437481 0.757739i 0.560014 0.828483i \(-0.310796\pi\)
−0.997494 + 0.0707446i \(0.977462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.50000 4.33013i 0.284491 0.164251i
\(696\) 0 0
\(697\) −18.0000 + 31.1769i −0.681799 + 1.18091i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 49.5000 + 9.52628i 1.86164 + 0.358273i
\(708\) 0 0
\(709\) −5.50000 9.52628i −0.206557 0.357767i 0.744071 0.668101i \(-0.232892\pi\)
−0.950628 + 0.310334i \(0.899559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.5000 + 18.1865i −1.17968 + 0.681091i
\(714\) 0 0
\(715\) −13.5000 7.79423i −0.504871 0.291488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −12.5000 + 4.33013i −0.465524 + 0.161262i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.00000 + 15.5885i −0.334252 + 0.578941i
\(726\) 0 0
\(727\) 12.5000 + 21.6506i 0.463599 + 0.802978i 0.999137 0.0415337i \(-0.0132244\pi\)
−0.535538 + 0.844511i \(0.679891\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30.0000 + 51.9615i 1.10959 + 1.92187i
\(732\) 0 0
\(733\) 19.5000 + 11.2583i 0.720249 + 0.415836i 0.814844 0.579680i \(-0.196822\pi\)
−0.0945954 + 0.995516i \(0.530156\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 0.552532
\(738\) 0 0
\(739\) 24.2487i 0.892003i 0.895032 + 0.446002i \(0.147152\pi\)
−0.895032 + 0.446002i \(0.852848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 37.5000 + 21.6506i 1.37574 + 0.794285i 0.991644 0.129008i \(-0.0411792\pi\)
0.384098 + 0.923292i \(0.374512\pi\)
\(744\) 0 0
\(745\) −4.50000 + 2.59808i −0.164867 + 0.0951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.0000 34.6410i 1.09618 1.26576i
\(750\) 0 0
\(751\) 10.5000 + 6.06218i 0.383150 + 0.221212i 0.679188 0.733964i \(-0.262332\pi\)
−0.296038 + 0.955176i \(0.595665\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.50000 4.33013i −0.271875 0.156967i 0.357865 0.933774i \(-0.383505\pi\)
−0.629739 + 0.776807i \(0.716838\pi\)
\(762\) 0 0
\(763\) 4.00000 + 3.46410i 0.144810 + 0.125409i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.5000 7.79423i 0.487457 0.281433i
\(768\) 0 0
\(769\) −22.5000 12.9904i −0.811371 0.468445i 0.0360609 0.999350i \(-0.488519\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 41.5692i 1.49514i −0.664183 0.747570i \(-0.731220\pi\)
0.664183 0.747570i \(-0.268780\pi\)
\(774\) 0 0
\(775\) −14.0000 −0.502895
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.0000 + 10.3923i 0.644917 + 0.372343i
\(780\) 0 0
\(781\) 3.00000 + 5.19615i 0.107348 + 0.185933i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.50000 2.59808i −0.0535373 0.0927293i
\(786\) 0 0
\(787\) −2.50000 + 4.33013i −0.0891154 + 0.154352i −0.907137 0.420834i \(-0.861737\pi\)
0.818022 + 0.575187i \(0.195071\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37.5000 12.9904i 1.33335 0.461885i
\(792\) 0 0
\(793\) −9.00000 −0.319599
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.50000 + 2.59808i 0.159398 + 0.0920286i 0.577577 0.816336i \(-0.303998\pi\)
−0.418179 + 0.908365i \(0.637332\pi\)
\(798\) 0 0
\(799\) −18.0000 + 10.3923i −0.636794 + 0.367653i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.00000 + 10.3923i 0.211735 + 0.366736i
\(804\) 0 0
\(805\) −4.50000 + 23.3827i −0.158604 + 0.824131i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.00000 5.19615i 0.105085 0.182013i
\(816\) 0 0
\(817\) 30.0000 17.3205i 1.04957 0.605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.50000 7.79423i −0.157051 0.272020i 0.776753 0.629805i \(-0.216865\pi\)
−0.933804 + 0.357785i \(0.883532\pi\)
\(822\) 0 0
\(823\) −31.5000 18.1865i −1.09802 0.633943i −0.162320 0.986738i \(-0.551898\pi\)
−0.935700 + 0.352795i \(0.885231\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.0333i 1.56596i −0.622046 0.782981i \(-0.713698\pi\)
0.622046 0.782981i \(-0.286302\pi\)
\(828\) 0 0
\(829\) 41.5692i 1.44376i 0.692019 + 0.721879i \(0.256721\pi\)
−0.692019 + 0.721879i \(0.743279\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −48.0000 + 6.92820i −1.66310 + 0.240048i
\(834\) 0 0
\(835\) 4.50000 2.59808i 0.155729 0.0899101i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.5000 38.9711i −0.776786 1.34543i −0.933785 0.357834i \(-0.883515\pi\)
0.156999 0.987599i \(-0.449818\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.2487i 0.834181i
\(846\) 0 0
\(847\) −20.0000 + 6.92820i −0.687208 + 0.238056i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −45.0000 25.9808i −1.54258 0.890609i
\(852\) 0 0
\(853\) −46.5000 + 26.8468i −1.59213 + 0.919216i −0.599189 + 0.800608i \(0.704510\pi\)
−0.992941 + 0.118609i \(0.962157\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.50000 2.59808i 0.153717 0.0887486i −0.421168 0.906982i \(-0.638380\pi\)
0.574886 + 0.818234i \(0.305047\pi\)
\(858\) 0 0
\(859\) 11.5000 19.9186i 0.392375 0.679613i −0.600387 0.799709i \(-0.704987\pi\)
0.992762 + 0.120096i \(0.0383202\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.1769i 1.06127i 0.847599 + 0.530637i \(0.178047\pi\)
−0.847599 + 0.530637i \(0.821953\pi\)
\(864\) 0 0
\(865\) −9.00000 −0.306009
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.50000 7.79423i 0.152652 0.264401i
\(870\) 0 0
\(871\) 22.5000 + 38.9711i 0.762383 + 1.32049i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −21.0000 + 24.2487i −0.709930 + 0.819756i
\(876\) 0 0
\(877\) 6.50000 11.2583i 0.219489 0.380167i −0.735163 0.677891i \(-0.762894\pi\)
0.954652 + 0.297724i \(0.0962275\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.92820i 0.233417i −0.993166 0.116709i \(-0.962766\pi\)
0.993166 0.116709i \(-0.0372343\pi\)
\(882\) 0 0
\(883\) 31.1769i 1.04919i 0.851353 + 0.524593i \(0.175783\pi\)
−0.851353 + 0.524593i \(0.824217\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.50000 + 12.9904i −0.251825 + 0.436174i −0.964028 0.265799i \(-0.914364\pi\)
0.712203 + 0.701974i \(0.247698\pi\)
\(888\) 0 0
\(889\) 30.0000 34.6410i 1.00617 1.16182i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) 0 0
\(895\) −3.00000 + 5.19615i −0.100279 + 0.173688i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63.0000 −2.10117
\(900\) 0 0
\(901\) 41.5692i 1.38487i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.0000 20.7846i 0.398893 0.690904i
\(906\) 0 0
\(907\) 31.5000 18.1865i 1.04594 0.603874i 0.124430 0.992228i \(-0.460290\pi\)
0.921510 + 0.388354i \(0.126956\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.50000 2.59808i 0.149092 0.0860781i −0.423598 0.905850i \(-0.639233\pi\)
0.572690 + 0.819772i \(0.305900\pi\)
\(912\) 0 0
\(913\) 13.5000 + 7.79423i 0.446785 + 0.257951i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 52.5000 18.1865i 1.73370 0.600572i
\(918\) 0 0
\(919\) 31.1769i 1.02843i −0.857661 0.514216i \(-0.828083\pi\)
0.857661 0.514216i \(-0.171917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.00000 + 15.5885i −0.296239 + 0.513100i
\(924\) 0 0
\(925\) −10.0000 17.3205i −0.328798 0.569495i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 16.5000 9.52628i 0.541347 0.312547i −0.204277 0.978913i \(-0.565484\pi\)
0.745625 + 0.666366i \(0.232151\pi\)
\(930\) 0 0
\(931\) 4.00000 + 27.7128i 0.131095 + 0.908251i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.7846i 0.679729i
\(936\) 0 0
\(937\) 34.6410i 1.13167i 0.824518 + 0.565836i \(0.191447\pi\)
−0.824518 + 0.565836i \(0.808553\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.5000 + 6.06218i 0.342290 + 0.197621i 0.661284 0.750135i \(-0.270012\pi\)
−0.318994 + 0.947757i \(0.603345\pi\)
\(942\) 0 0
\(943\) −13.5000 23.3827i −0.439620 0.761445i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.5000 + 21.6506i −1.21859 + 0.703551i −0.964615 0.263661i \(-0.915070\pi\)
−0.253971 + 0.967212i \(0.581737\pi\)
\(948\) 0 0
\(949\) −18.0000 + 31.1769i −0.584305 + 1.01205i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) −21.0000 −0.679544
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.50000 + 7.79423i −0.0484375 + 0.251689i
\(960\) 0 0
\(961\) −9.00000 15.5885i −0.290323 0.502853i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.50000 + 4.33013i −0.241434 + 0.139392i
\(966\) 0 0
\(967\) 28.5000 + 16.4545i 0.916498 + 0.529140i 0.882516 0.470282i \(-0.155848\pi\)
0.0339820 + 0.999422i \(0.489181\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 0 0
\(973\) −12.5000 + 4.33013i −0.400732 + 0.138817i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.5000 + 28.5788i −0.527882 + 0.914318i 0.471590 + 0.881818i \(0.343680\pi\)
−0.999472 + 0.0325001i \(0.989653\pi\)
\(978\) 0 0
\(979\) −6.00000 10.3923i −0.191761 0.332140i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.50000 + 12.9904i 0.239213 + 0.414329i 0.960489 0.278319i \(-0.0897773\pi\)
−0.721276 + 0.692648i \(0.756444\pi\)
\(984\) 0 0
\(985\) 9.00000 + 5.19615i 0.286764 + 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −45.0000 −1.43092
\(990\) 0 0
\(991\) 17.3205i 0.550204i −0.961415 0.275102i \(-0.911288\pi\)
0.961415 0.275102i \(-0.0887116\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.00000 3.46410i −0.190213 0.109819i
\(996\) 0 0
\(997\) 31.5000 18.1865i 0.997615 0.575973i 0.0900732 0.995935i \(-0.471290\pi\)
0.907542 + 0.419962i \(0.137957\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cx.c.2575.1 2
3.2 odd 2 1008.2.cx.g.895.1 yes 2
4.3 odd 2 3024.2.cx.b.2575.1 2
7.6 odd 2 3024.2.cx.e.2575.1 2
9.2 odd 6 1008.2.cx.c.223.1 yes 2
9.7 even 3 3024.2.cx.h.559.1 2
12.11 even 2 1008.2.cx.f.895.1 yes 2
21.20 even 2 1008.2.cx.b.895.1 yes 2
28.27 even 2 3024.2.cx.h.2575.1 2
36.7 odd 6 3024.2.cx.e.559.1 2
36.11 even 6 1008.2.cx.b.223.1 2
63.20 even 6 1008.2.cx.f.223.1 yes 2
63.34 odd 6 3024.2.cx.b.559.1 2
84.83 odd 2 1008.2.cx.c.895.1 yes 2
252.83 odd 6 1008.2.cx.g.223.1 yes 2
252.223 even 6 inner 3024.2.cx.c.559.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.b.223.1 2 36.11 even 6
1008.2.cx.b.895.1 yes 2 21.20 even 2
1008.2.cx.c.223.1 yes 2 9.2 odd 6
1008.2.cx.c.895.1 yes 2 84.83 odd 2
1008.2.cx.f.223.1 yes 2 63.20 even 6
1008.2.cx.f.895.1 yes 2 12.11 even 2
1008.2.cx.g.223.1 yes 2 252.83 odd 6
1008.2.cx.g.895.1 yes 2 3.2 odd 2
3024.2.cx.b.559.1 2 63.34 odd 6
3024.2.cx.b.2575.1 2 4.3 odd 2
3024.2.cx.c.559.1 2 252.223 even 6 inner
3024.2.cx.c.2575.1 2 1.1 even 1 trivial
3024.2.cx.e.559.1 2 36.7 odd 6
3024.2.cx.e.2575.1 2 7.6 odd 2
3024.2.cx.h.559.1 2 9.7 even 3
3024.2.cx.h.2575.1 2 28.27 even 2