Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 14 x^{2} + 33 x^{3} + 121 x^{4}$ |
| Frobenius angles: | $\pm0.417424003664$, $\pm0.750757336997$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{41})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $10$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $172$ | $17200$ | $1771600$ | $216100800$ | $25721253412$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $15$ | $141$ | $1332$ | $14761$ | $159705$ | $1771638$ | $19501875$ | $214343761$ | $2357947692$ | $25937141901$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=7 x^6+5 x^5+9 x^4+9 x^3+6 x^2+6 x+1$
- $y^2=8 x^6+6 x^5+7 x^4+10 x^3+6 x^2+9 x+3$
- $y^2=4 x^6+x^5+x^4+7 x^2+6 x+9$
- $y^2=9 x^6+2 x^3+3 x^2+10 x+9$
- $y^2=5 x^6+7 x^5+6 x^4+7 x^3+2 x^2+3 x+5$
- $y^2=4 x^6+3 x^5+6 x^4+4 x^3+4 x^2+6 x+7$
- $y^2=9 x^6+6 x^5+x^4+5 x^3+5 x^2+9 x+5$
- $y^2=9 x^6+3 x^5+10 x^4+8 x^3+3 x^2+10 x+10$
- $y^2=8 x^6+6 x^5+6 x^4+6 x^3+2 x^2+10 x$
- $y^2=5 x^6+4 x^5+x^4+2 x^3+9 x^2+9 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{6}}$.
Endomorphism algebra over $\F_{11}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{41})\). |
| The base change of $A$ to $\F_{11^{6}}$ is 1.1771561.bm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
- Endomorphism algebra over $\F_{11^{2}}$
The base change of $A$ to $\F_{11^{2}}$ is the simple isogeny class 2.121.t_jg and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{41})\). - Endomorphism algebra over $\F_{11^{3}}$
The base change of $A$ to $\F_{11^{3}}$ is the simple isogeny class 2.1331.a_bm and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{41})\).
Base change
This is a primitive isogeny class.