Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 5 x + 97 x^{2} )( 1 + 14 x + 97 x^{2} )$ |
| $1 + 9 x + 124 x^{2} + 873 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.418307468341$, $\pm0.751640801674$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $288$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10416$ | $90119232$ | $832972061376$ | $7838236637247744$ | $73739732527195993776$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $107$ | $9577$ | $912674$ | $88538353$ | $8587028147$ | $832972117822$ | $80798314244867$ | $7837433499601441$ | $760231058654565218$ | $73742412674196414457$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=20 x^6+95 x^5+12 x^4+80 x^3+44 x^2+77 x+79$
- $y^2=66 x^6+92 x^5+94 x^4+27 x^3+28 x^2+27 x+21$
- $y^2=20 x^6+94 x^5+34 x^4+35 x^3+83 x^2+66 x+66$
- $y^2=89 x^6+63 x^5+50 x^3+61 x^2+61 x+44$
- $y^2=49 x^6+51 x^5+17 x^4+9 x^3+62 x^2+32 x+73$
- $y^2=22 x^6+15 x^5+71 x^4+94 x^3+28 x^2+78 x+63$
- $y^2=29 x^6+18 x^5+7 x^4+28 x^3+74 x^2+54 x+31$
- $y^2=32 x^6+95 x^5+75 x^4+2 x^3+29 x^2+26 x+12$
- $y^2=5 x^6+45 x^5+35 x^4+30 x^3+14 x^2+15 x+55$
- $y^2=x^6+x^3+40$
- $y^2=49 x^6+68 x^5+79 x^4+27 x^3+45 x^2+47 x+33$
- $y^2=51 x^6+80 x^5+80 x^4+44 x^3+22 x^2+60 x+15$
- $y^2=48 x^6+87 x^5+14 x^4+58 x^3+84 x^2+23 x+34$
- $y^2=50 x^6+64 x^5+36 x^4+11 x^3+64 x^2+79 x+56$
- $y^2=74 x^6+39 x^5+93 x^4+48 x^3+71 x^2+71 x+22$
- $y^2=37 x^6+33 x^5+26 x^4+65 x^3+24 x^2+45 x+6$
- $y^2=43 x^6+75 x^5+33 x^4+55 x^3+37 x^2+35 x+72$
- $y^2=2 x^6+78 x^5+5 x^4+63 x^3+93 x^2+9 x+37$
- $y^2=87 x^6+86 x^5+44 x^3+56 x^2+24 x+60$
- $y^2=6 x^6+43 x^5+81 x^4+18 x^3+91 x^2+17 x+94$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{6}}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.af $\times$ 1.97.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{97^{6}}$ is 1.832972004929.dfna 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{97^{2}}$
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.ac $\times$ 1.9409.gn. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{97^{3}}$
The base change of $A$ to $\F_{97^{3}}$ is 1.912673.abze $\times$ 1.912673.bze. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.