| L(s) = 1 | − 4·5-s − 2·9-s − 4·19-s + 11·25-s + 4·29-s + 8·31-s − 4·41-s + 8·45-s + 49-s + 12·59-s + 8·61-s − 16·79-s − 5·81-s + 20·89-s + 16·95-s + 24·101-s + 20·109-s − 22·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s − 32·155-s + ⋯ |
| L(s) = 1 | − 1.78·5-s − 2/3·9-s − 0.917·19-s + 11/5·25-s + 0.742·29-s + 1.43·31-s − 0.624·41-s + 1.19·45-s + 1/7·49-s + 1.56·59-s + 1.02·61-s − 1.80·79-s − 5/9·81-s + 2.11·89-s + 1.64·95-s + 2.38·101-s + 1.91·109-s − 2·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8038577114\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8038577114\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.962370660926456280013102621248, −8.928329697232844766585907221767, −8.694697440739683427951548718991, −8.188057214509100026281306554311, −7.965971686397333220186526353962, −7.14438434722230698367292292955, −6.86591116390976664813936408049, −6.19535765189485358396007496237, −5.55399016745426097333734158356, −4.61889361197427675528739680931, −4.50185552371175935345657331179, −3.62433266137155427382097354955, −3.14137792992390816749783057891, −2.29482126376589182159266782001, −0.68915328699946070952810996679,
0.68915328699946070952810996679, 2.29482126376589182159266782001, 3.14137792992390816749783057891, 3.62433266137155427382097354955, 4.50185552371175935345657331179, 4.61889361197427675528739680931, 5.55399016745426097333734158356, 6.19535765189485358396007496237, 6.86591116390976664813936408049, 7.14438434722230698367292292955, 7.965971686397333220186526353962, 8.188057214509100026281306554311, 8.694697440739683427951548718991, 8.928329697232844766585907221767, 9.962370660926456280013102621248