L(s) = 1 | + 2·19-s + 22·31-s − 11·49-s − 26·61-s − 34·79-s − 34·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯ |
L(s) = 1 | + 0.458·19-s + 3.95·31-s − 1.57·49-s − 3.32·61-s − 3.82·79-s − 3.25·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.017205262\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.017205262\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.085934589697565499931874923028, −8.554375031386572192766114440581, −8.249257195434094560268135290200, −7.895836742145397942675674466628, −7.66345477838261376773631625211, −7.13720056262630286276754617072, −6.49882639138016679980529514382, −6.49735603104344151592564699896, −6.10842584000220166381384788243, −5.46372097465066060297320043637, −5.19333582488680583501874918662, −4.58202955010652334834121685459, −4.35109969994434934622480930644, −4.02292273172673601132911816275, −3.07952888103989891181845320424, −2.91461285961539964307065596914, −2.66986118010616510334576986238, −1.56702030443397789125754367025, −1.40234944128730670629850968073, −0.47881842568646752659034258515,
0.47881842568646752659034258515, 1.40234944128730670629850968073, 1.56702030443397789125754367025, 2.66986118010616510334576986238, 2.91461285961539964307065596914, 3.07952888103989891181845320424, 4.02292273172673601132911816275, 4.35109969994434934622480930644, 4.58202955010652334834121685459, 5.19333582488680583501874918662, 5.46372097465066060297320043637, 6.10842584000220166381384788243, 6.49735603104344151592564699896, 6.49882639138016679980529514382, 7.13720056262630286276754617072, 7.66345477838261376773631625211, 7.895836742145397942675674466628, 8.249257195434094560268135290200, 8.554375031386572192766114440581, 9.085934589697565499931874923028