Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 83 x^{2} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.457838391839$, $\pm0.542161608161$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1933$ | $3736489$ | $6321474436$ | $11666398503321$ | $21611482384956493$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $2016$ | $79508$ | $3412420$ | $147008444$ | $6321585822$ | $271818611108$ | $11688193587844$ | $502592611936844$ | $21611482456628736$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=37 x^6+37 x^5+9 x^4+31 x^3+11 x^2+15$
- $y^2=25 x^6+25 x^5+27 x^4+7 x^3+33 x^2+2$
- $y^2=33 x^6+20 x^5+17 x^4+28 x^3+26 x^2+14 x+20$
- $y^2=13 x^6+17 x^5+8 x^4+41 x^3+35 x^2+42 x+17$
- $y^2=11 x^6+40 x^5+7 x^4+10 x^3+11 x^2+22 x+41$
- $y^2=33 x^6+34 x^5+21 x^4+30 x^3+33 x^2+23 x+37$
- $y^2=17 x^6+29 x^5+6 x^4+32 x^3+21 x^2+20 x+18$
- $y^2=8 x^6+x^5+18 x^4+10 x^3+20 x^2+17 x+11$
- $y^2=38 x^6+6 x^5+40 x^4+42 x^3+40 x^2+30 x+8$
- $y^2=28 x^6+18 x^5+34 x^4+40 x^3+34 x^2+4 x+24$
- $y^2=13 x^6+40 x^5+2 x^4+13 x^3+29 x^2+36 x+5$
- $y^2=x^6+2 x^5+8 x^4+32 x^3+27 x^2+6 x+21$
- $y^2=3 x^6+6 x^5+24 x^4+10 x^3+38 x^2+18 x+20$
- $y^2=10 x^6+14 x^5+3 x^4+29 x^3+28 x^2+5 x+32$
- $y^2=30 x^6+42 x^5+9 x^4+x^3+41 x^2+15 x+10$
- $y^2=36 x^6+30 x^5+x^4+28 x^3+19 x^2+35 x+41$
- $y^2=22 x^6+4 x^5+3 x^4+41 x^3+14 x^2+19 x+37$
- $y^2=19 x^6+40 x^5+8 x^4+10 x^3+14 x^2+21 x+26$
- $y^2=14 x^6+34 x^5+24 x^4+30 x^3+42 x^2+20 x+35$
- $y^2=23 x^6+28 x^5+3 x^4+29 x^3+35 x^2+39 x+17$
- $y^2=26 x^6+41 x^5+9 x^4+x^3+19 x^2+31 x+8$
- $y^2=30 x^6+7 x^5+13 x^4+16 x^3+31 x^2+30 x+11$
- $y^2=4 x^6+21 x^5+39 x^4+5 x^3+7 x^2+4 x+33$
- $y^2=39 x^6+37 x^5+5 x^4+12 x^3+34 x^2+33 x+17$
- $y^2=31 x^6+25 x^5+15 x^4+36 x^3+16 x^2+13 x+8$
- $y^2=10 x^6+x^5+26 x^4+41 x^3+40 x^2+10 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.df 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.