Properties

Label 2.37.a_bv
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 47 x^{2} + 1369 x^{4}$
Frobenius angles:  $\pm0.359527799744$, $\pm0.640472200256$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\zeta_{12})\)
Galois group:  $C_2^2$
Jacobians:  $88$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1417$ $2007889$ $2565637204$ $3514466345481$ $4808584331522257$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $1464$ $50654$ $1875220$ $69343958$ $2565547998$ $94931877134$ $3512486390884$ $129961739795078$ $4808584290626664$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 88 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37^{2}}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\).
Endomorphism algebra over $\overline{\F}_{37}$
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.bv 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.a_acv$3$(not in LMFDB)
2.37.a_ba$3$(not in LMFDB)
2.37.aw_hn$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.a_acv$3$(not in LMFDB)
2.37.a_ba$3$(not in LMFDB)
2.37.aw_hn$4$(not in LMFDB)
2.37.a_abv$4$(not in LMFDB)
2.37.w_hn$4$(not in LMFDB)
2.37.av_hc$12$(not in LMFDB)
2.37.au_gs$12$(not in LMFDB)
2.37.am_dh$12$(not in LMFDB)
2.37.al_dg$12$(not in LMFDB)
2.37.ak_cl$12$(not in LMFDB)
2.37.aj_cm$12$(not in LMFDB)
2.37.ac_cx$12$(not in LMFDB)
2.37.ab_abk$12$(not in LMFDB)
2.37.a_aba$12$(not in LMFDB)
2.37.a_cv$12$(not in LMFDB)
2.37.b_abk$12$(not in LMFDB)
2.37.c_cx$12$(not in LMFDB)
2.37.j_cm$12$(not in LMFDB)
2.37.k_cl$12$(not in LMFDB)
2.37.l_dg$12$(not in LMFDB)
2.37.m_dh$12$(not in LMFDB)
2.37.u_gs$12$(not in LMFDB)
2.37.v_hc$12$(not in LMFDB)