| L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 3·11-s − 2·13-s + 5·16-s − 3·17-s + 19-s + 6·22-s − 6·23-s + 5·25-s + 4·26-s + 6·29-s − 8·31-s − 6·32-s + 6·34-s + 4·37-s − 2·38-s + 9·41-s + 43-s − 9·44-s + 12·46-s + 12·47-s − 10·50-s − 6·52-s + 12·53-s − 12·58-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s − 0.904·11-s − 0.554·13-s + 5/4·16-s − 0.727·17-s + 0.229·19-s + 1.27·22-s − 1.25·23-s + 25-s + 0.784·26-s + 1.11·29-s − 1.43·31-s − 1.06·32-s + 1.02·34-s + 0.657·37-s − 0.324·38-s + 1.40·41-s + 0.152·43-s − 1.35·44-s + 1.76·46-s + 1.75·47-s − 1.41·50-s − 0.832·52-s + 1.64·53-s − 1.57·58-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.120542259\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.120542259\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.923651824034210541314266152522, −8.851120212131100275666077497982, −8.132841470099691173515657155274, −8.093500395163308513568710186676, −7.65015655580751846149006326545, −7.23089837584664638546175356192, −6.82712407970766879288589273264, −6.71158262676028955317412597818, −5.87058900706700462779698170274, −5.81270967541070715068806227330, −5.24573033346363685696718462661, −4.84857703102516482141371735729, −4.08403213183626612063990825431, −3.97438039560080224251254609982, −3.09595343212417031009774622149, −2.69939529476788285965806656157, −2.09315382817874986257842745361, −2.08747718039733568228513271301, −0.841499227779318127024314506398, −0.59159463084271176201386647019,
0.59159463084271176201386647019, 0.841499227779318127024314506398, 2.08747718039733568228513271301, 2.09315382817874986257842745361, 2.69939529476788285965806656157, 3.09595343212417031009774622149, 3.97438039560080224251254609982, 4.08403213183626612063990825431, 4.84857703102516482141371735729, 5.24573033346363685696718462661, 5.81270967541070715068806227330, 5.87058900706700462779698170274, 6.71158262676028955317412597818, 6.82712407970766879288589273264, 7.23089837584664638546175356192, 7.65015655580751846149006326545, 8.093500395163308513568710186676, 8.132841470099691173515657155274, 8.851120212131100275666077497982, 8.923651824034210541314266152522