Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 11 x + 48 x^{2} + 803 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.389279142100$, $\pm0.944054191233$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-19})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $173$ |
| Isomorphism classes: | 165 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6192$ | $28260288$ | $152174889216$ | $806175244594944$ | $4297560176529101232$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $85$ | $5305$ | $391174$ | $28388209$ | $2073039925$ | $151333458190$ | $11047405055485$ | $806460135758689$ | $58871586697559062$ | $4297625826560340025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 173 curves (of which all are hyperelliptic):
- $y^2=29 x^6+50 x^5+55 x^4+38 x^3+42 x^2+21 x+43$
- $y^2=54 x^6+63 x^5+65 x^4+43 x^3+63 x^2+26 x+38$
- $y^2=71 x^6+41 x^5+60 x^4+23 x^3+10 x^2+32 x+58$
- $y^2=17 x^6+x^5+31 x^4+4 x^3+40 x^2+21 x+3$
- $y^2=15 x^6+12 x^5+8 x^4+55 x^3+70 x^2+12 x+10$
- $y^2=58 x^6+21 x^5+45 x^4+64 x^3+x^2+14 x+62$
- $y^2=43 x^6+58 x^5+16 x^4+34 x^3+44 x^2+71 x+24$
- $y^2=35 x^6+44 x^5+25 x^4+9 x^3+32 x^2+37 x+8$
- $y^2=28 x^6+x^5+31 x^4+x^3+51 x^2+33 x+49$
- $y^2=50 x^5+43 x^4+57 x^3+49 x^2+57 x+18$
- $y^2=72 x^6+21 x^5+69 x^4+40 x^3+49 x^2+17 x+21$
- $y^2=31 x^6+21 x^5+29 x^4+20 x^3+44 x^2+24 x+26$
- $y^2=9 x^6+15 x^5+62 x^4+71 x^3+34 x^2+48 x+56$
- $y^2=71 x^6+37 x^5+37 x^4+36 x^3+54 x^2+35 x+9$
- $y^2=51 x^6+54 x^5+40 x^4+66 x^3+19 x^2+2 x+47$
- $y^2=5 x^6+3 x^5+16 x^4+65 x^3+34 x^2+70 x+71$
- $y^2=8 x^6+25 x^5+32 x^4+17 x^3+66 x^2+39 x+61$
- $y^2=44 x^6+14 x^5+26 x^4+34 x^3+61 x^2+65 x+60$
- $y^2=25 x^6+21 x^5+3 x^4+6 x^3+15 x^2+44 x+71$
- $y^2=36 x^6+32 x^5+3 x^4+20 x^3+8 x^2+6 x+34$
- and 153 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-19})\). |
| The base change of $A$ to $\F_{73^{3}}$ is 1.389017.bpm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.