Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 59 x^{2} )^{2}$ |
| $1 + 6 x + 127 x^{2} + 354 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.562562653022$, $\pm0.562562653022$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $60$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 7$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3969$ | $12895281$ | $41974175376$ | $146711275428249$ | $511180374963876849$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $3700$ | $204372$ | $12107524$ | $715013286$ | $42180847126$ | $2488645294194$ | $146830437680644$ | $8662996183672908$ | $511116752201084500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=45 x^6+27 x^5+15 x^4+43 x^3+18 x^2+55 x+51$
- $y^2=28 x^6+24 x^5+11 x^4+18 x^3+40 x^2+12 x+18$
- $y^2=22 x^6+28 x^5+43 x^4+42 x^3+43 x^2+28 x+22$
- $y^2=3 x^6+35 x^5+16 x^4+33 x^3+45 x^2+48 x+20$
- $y^2=2 x^6+10 x^5+18 x^4+53 x^3+18 x^2+10 x+2$
- $y^2=40 x^6+22 x^5+3 x^4+5 x^3+10 x^2+3 x+2$
- $y^2=48 x^6+39 x^5+3 x^4+16 x^3+3 x^2+39 x+48$
- $y^2=33 x^6+49 x^5+24 x^4+52 x^3+17 x^2+2 x+40$
- $y^2=27 x^6+22 x^5+40 x^4+20 x^3+40 x^2+22 x+27$
- $y^2=24 x^6+47 x^5+43 x^4+5 x^3+43 x^2+47 x+24$
- $y^2=5 x^6+42 x^5+8 x^4+54 x^3+8 x^2+42 x+5$
- $y^2=15 x^6+10 x^5+15 x^4+8 x^3+15 x^2+10 x+15$
- $y^2=5 x^6+30 x^5+32 x^4+3 x^3+32 x^2+30 x+5$
- $y^2=10 x^6+55 x^5+54 x^4+16 x^3+4 x+16$
- $y^2=40 x^6+15 x^5+42 x^4+19 x^3+54 x^2+26 x+47$
- $y^2=10 x^6+24 x^5+21 x^4+34 x^3+21 x^2+24 x+10$
- $y^2=7 x^6+6 x^5+34 x^4+44 x^3+27 x^2+4 x+15$
- $y^2=25 x^6+12 x^5+12 x^4+39 x^3+12 x^2+12 x+25$
- $y^2=17 x^6+43 x^5+48 x^4+7 x^3+48 x^2+43 x+17$
- $y^2=39 x^6+30 x^5+12 x^4+23 x^3+6 x^2+51 x+32$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-227}) \)$)$ |
Base change
This is a primitive isogeny class.