L(s) = 1 | + 4-s + 2·5-s + 16-s + 2·20-s − 7·25-s − 16·31-s − 10·37-s − 8·47-s + 2·49-s + 10·53-s + 64-s + 24·67-s + 32·71-s + 2·80-s + 34·89-s − 10·97-s − 7·100-s + 8·103-s − 6·113-s − 16·124-s − 26·125-s + 127-s + 131-s + 137-s + 139-s − 10·148-s + 149-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 0.894·5-s + 1/4·16-s + 0.447·20-s − 7/5·25-s − 2.87·31-s − 1.64·37-s − 1.16·47-s + 2/7·49-s + 1.37·53-s + 1/8·64-s + 2.93·67-s + 3.79·71-s + 0.223·80-s + 3.60·89-s − 1.01·97-s − 0.699·100-s + 0.788·103-s − 0.564·113-s − 1.43·124-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.821·148-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.26634431715188481710062362858, −6.57075345351642095686100440124, −6.44934005324156407715983783944, −5.92644738805241385436272478186, −5.31913862642412009263974020553, −5.31461075754579465246483014136, −4.91383230445445327227957950722, −3.84672567348487089358465749426, −3.70577819101418826144462093465, −3.48639974405348834102831799643, −2.45043366078956231065795739764, −2.04050454327404296238699132645, −1.94840976863843280215220992485, −1.04136613544003206830324521562, 0,
1.04136613544003206830324521562, 1.94840976863843280215220992485, 2.04050454327404296238699132645, 2.45043366078956231065795739764, 3.48639974405348834102831799643, 3.70577819101418826144462093465, 3.84672567348487089358465749426, 4.91383230445445327227957950722, 5.31461075754579465246483014136, 5.31913862642412009263974020553, 5.92644738805241385436272478186, 6.44934005324156407715983783944, 6.57075345351642095686100440124, 7.26634431715188481710062362858