Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 41 x^{2} )( 1 + 11 x + 41 x^{2} )$ |
$1 - 39 x^{2} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.171113726078$, $\pm0.828886273922$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1643$ | $2699449$ | $4750241600$ | $7995338725609$ | $13422659167481003$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $1604$ | $68922$ | $2829444$ | $115856202$ | $4750378958$ | $194754273882$ | $7984929753604$ | $327381934393962$ | $13422659024809604$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=40 x^6+9 x^5+30 x^4+12 x^3+6 x^2+6 x+29$
- $y^2=35 x^6+13 x^5+16 x^4+31 x^3+36 x^2+36 x+10$
- $y^2=8 x^6+14 x^5+12 x^4+21 x^3+30 x^2+4 x+31$
- $y^2=14 x^6+15 x^5+30 x^3+13 x^2+12 x+32$
- $y^2=27 x^6+4 x^5+34 x^4+25 x^3+38 x^2+21 x+4$
- $y^2=39 x^6+24 x^5+40 x^4+27 x^3+23 x^2+3 x+24$
- $y^2=x^6+12 x^5+29 x^4+3 x^3+4 x^2+21 x+8$
- $y^2=29 x^6+15 x^5+4 x^4+14 x^3+27 x^2+26 x+11$
- $y^2=10 x^6+8 x^5+24 x^4+2 x^3+39 x^2+33 x+25$
- $y^2=35 x^6+21 x^5+28 x^4+22 x^3+11 x^2+13 x+39$
- $y^2=39 x^6+24 x^4+30 x^3+24 x^2+39$
- $y^2=29 x^6+21 x^4+16 x^3+21 x^2+29$
- $y^2=19 x^6+13 x^5+25 x^4+x^3+13 x^2+20 x+30$
- $y^2=32 x^6+37 x^5+27 x^4+6 x^3+37 x^2+38 x+16$
- $y^2=17 x^6+28 x^5+40 x^4+7 x^3+37 x^2+13 x+12$
- $y^2=28 x^6+20 x^5+18 x^4+11 x^3+27 x^2+10 x+20$
- $y^2=4 x^6+38 x^5+26 x^4+25 x^3+39 x^2+19 x+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.al $\times$ 1.41.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.abn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
Base change
This is a primitive isogeny class.