Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 17 x + 89 x^{2} )^{2}$ |
$1 - 34 x + 467 x^{2} - 3026 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.142835623920$, $\pm0.142835623920$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5329$ | $61011721$ | $496455523216$ | $3937030774452169$ | $31182760181908623649$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $7700$ | $704222$ | $62749284$ | $5584245736$ | $496983831086$ | $44231361498184$ | $3936589031876164$ | $350356405184808398$ | $31181719934951184500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=45 x^6+79 x^5+3 x^4+43 x^3+15 x^2+52 x+29$
- $y^2=21 x^6+27 x^5+13 x^4+61 x^3+37 x^2+76 x+80$
- $y^2=88 x^6+46 x^5+27 x^4+64 x^3+82 x^2+5 x+71$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.ar 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.