L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 12·17-s + 2·25-s − 12·29-s − 16·31-s + 6·32-s + 24·34-s − 4·37-s + 12·41-s − 2·49-s + 4·50-s − 24·58-s − 32·62-s + 7·64-s + 8·67-s + 36·68-s − 8·74-s + 24·82-s + 24·83-s − 20·97-s − 4·98-s + 6·100-s + 36·101-s − 32·103-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 5/4·16-s + 2.91·17-s + 2/5·25-s − 2.22·29-s − 2.87·31-s + 1.06·32-s + 4.11·34-s − 0.657·37-s + 1.87·41-s − 2/7·49-s + 0.565·50-s − 3.15·58-s − 4.06·62-s + 7/8·64-s + 0.977·67-s + 4.36·68-s − 0.929·74-s + 2.65·82-s + 2.63·83-s − 2.03·97-s − 0.404·98-s + 3/5·100-s + 3.58·101-s − 3.15·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.965042238\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.965042238\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.218846647266054357255285169383, −9.094150986013175514922413777611, −8.223850184439115354673537147746, −7.966709082705430701772960447128, −7.52633410466568362151748159832, −7.27417172720209469535895384438, −7.05597760164910291562413115026, −6.33648496466454407142480253979, −5.84678309940390184304269883176, −5.66627082218340301688879432238, −5.21913843494221814288090726907, −5.16191686503733930132580416292, −4.31965283118642362147198683925, −3.80947446600837650140939222033, −3.56372967774523466564750257836, −3.28694517513706333517940938019, −2.65340378767365384133327502168, −1.91625927193738007672887048928, −1.61222589263046787591331898516, −0.72395614243674917297345015033,
0.72395614243674917297345015033, 1.61222589263046787591331898516, 1.91625927193738007672887048928, 2.65340378767365384133327502168, 3.28694517513706333517940938019, 3.56372967774523466564750257836, 3.80947446600837650140939222033, 4.31965283118642362147198683925, 5.16191686503733930132580416292, 5.21913843494221814288090726907, 5.66627082218340301688879432238, 5.84678309940390184304269883176, 6.33648496466454407142480253979, 7.05597760164910291562413115026, 7.27417172720209469535895384438, 7.52633410466568362151748159832, 7.966709082705430701772960447128, 8.223850184439115354673537147746, 9.094150986013175514922413777611, 9.218846647266054357255285169383